diff --git a/libstdc++-v3/config/abi/pre/gnu.ver b/libstdc++-v3/config/abi/pre/gnu.ver index 4b4bd8ab6da04a86344d0fc94a804905d419c5ea..05e0a512247d623228511c85d9ace47d836b05b0 100644 --- a/libstdc++-v3/config/abi/pre/gnu.ver +++ b/libstdc++-v3/config/abi/pre/gnu.ver @@ -2393,6 +2393,13 @@ GLIBCXX_3.4.29 { # std::once_flag::_M_finish(bool) _ZNSt9once_flag9_M_finishEb; + # std::to_chars(char*, char*, [float|double|long double]) + _ZSt8to_charsPcS_[defg]; + # std::to_chars(char*, char*, [float|double|long double], chars_format) + _ZSt8to_charsPcS_[defg]St12chars_format; + # std::to_chars(char*, char*, [float|double|long double], chars_format, int) + _ZSt8to_charsPcS_[defg]St12chars_formati; + } GLIBCXX_3.4.28; # Symbols in the support library (libsupc++) have their own tag. diff --git a/libstdc++-v3/include/std/charconv b/libstdc++-v3/include/std/charconv index dd1ebdf832292afb09f3788bc01e77ed25a63c1e..b57b0a16db27a14fc294eb28079d41e9888d75b2 100644 --- a/libstdc++-v3/include/std/charconv +++ b/libstdc++-v3/include/std/charconv @@ -702,6 +702,30 @@ namespace __detail chars_format __fmt = chars_format::general) noexcept; #endif + // Floating-point std::to_chars + + // Overloads for float. + to_chars_result to_chars(char* __first, char* __last, float __value) noexcept; + to_chars_result to_chars(char* __first, char* __last, float __value, + chars_format __fmt) noexcept; + to_chars_result to_chars(char* __first, char* __last, float __value, + chars_format __fmt, int __precision) noexcept; + + // Overloads for double. + to_chars_result to_chars(char* __first, char* __last, double __value) noexcept; + to_chars_result to_chars(char* __first, char* __last, double __value, + chars_format __fmt) noexcept; + to_chars_result to_chars(char* __first, char* __last, double __value, + chars_format __fmt, int __precision) noexcept; + + // Overloads for long double. + to_chars_result to_chars(char* __first, char* __last, long double __value) + noexcept; + to_chars_result to_chars(char* __first, char* __last, long double __value, + chars_format __fmt) noexcept; + to_chars_result to_chars(char* __first, char* __last, long double __value, + chars_format __fmt, int __precision) noexcept; + _GLIBCXX_END_NAMESPACE_VERSION } // namespace std #endif // C++14 diff --git a/libstdc++-v3/src/c++17/Makefile.am b/libstdc++-v3/src/c++17/Makefile.am index 37cdb53c07661f79da82858b529627c2967e69d0..2ec5ed621ca681a9eed138acbf88641629beffd5 100644 --- a/libstdc++-v3/src/c++17/Makefile.am +++ b/libstdc++-v3/src/c++17/Makefile.am @@ -51,6 +51,7 @@ endif sources = \ floating_from_chars.cc \ + floating_to_chars.cc \ fs_dir.cc \ fs_ops.cc \ fs_path.cc \ diff --git a/libstdc++-v3/src/c++17/Makefile.in b/libstdc++-v3/src/c++17/Makefile.in index ccae721ab3faaae22cff6bfb8821e9b4b121bb2d..9b36b7a916c8591e073ae07aaf59a87834105e75 100644 --- a/libstdc++-v3/src/c++17/Makefile.in +++ b/libstdc++-v3/src/c++17/Makefile.in @@ -124,7 +124,7 @@ LTLIBRARIES = $(noinst_LTLIBRARIES) libc__17convenience_la_LIBADD = @ENABLE_DUAL_ABI_TRUE@am__objects_1 = cow-fs_dir.lo cow-fs_ops.lo \ @ENABLE_DUAL_ABI_TRUE@ cow-fs_path.lo -am__objects_2 = floating_from_chars.lo fs_dir.lo fs_ops.lo fs_path.lo \ +am__objects_2 = floating_from_chars.lo floating_to_chars.lo fs_dir.lo fs_ops.lo fs_path.lo \ memory_resource.lo $(am__objects_1) @ENABLE_DUAL_ABI_TRUE@am__objects_3 = cow-string-inst.lo @ENABLE_EXTERN_TEMPLATE_TRUE@am__objects_4 = ostream-inst.lo \ @@ -440,6 +440,7 @@ headers = sources = \ floating_from_chars.cc \ + floating_to_chars.cc \ fs_dir.cc \ fs_ops.cc \ fs_path.cc \ diff --git a/libstdc++-v3/src/c++17/floating_to_chars.cc b/libstdc++-v3/src/c++17/floating_to_chars.cc new file mode 100644 index 0000000000000000000000000000000000000000..dd83f5eea93fdc609e7516c03fb47bebb6ee9662 --- /dev/null +++ b/libstdc++-v3/src/c++17/floating_to_chars.cc @@ -0,0 +1,1563 @@ +// std::to_chars implementation for floating-point types -*- C++ -*- + +// Copyright (C) 2020 Free Software Foundation, Inc. +// +// This file is part of the GNU ISO C++ Library. This library is free +// software; you can redistribute it and/or modify it under the +// terms of the GNU General Public License as published by the +// Free Software Foundation; either version 3, or (at your option) +// any later version. + +// This library is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU General Public License for more details. + +// Under Section 7 of GPL version 3, you are granted additional +// permissions described in the GCC Runtime Library Exception, version +// 3.1, as published by the Free Software Foundation. + +// You should have received a copy of the GNU General Public License and +// a copy of the GCC Runtime Library Exception along with this program; +// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see +// <http://www.gnu.org/licenses/>. + +// Activate __glibcxx_assert within this file to shake out any bugs. +#define _GLIBCXX_ASSERTIONS 1 + +#include <charconv> + +#include <bit> +#include <cfenv> +#include <cassert> +#include <cmath> +#include <cstdio> +#include <cstring> +#include <langinfo.h> +#include <optional> +#include <string_view> +#include <type_traits> + +// Determine the binary format of 'long double'. + +// We support the binary64, float80 (i.e. x86 80-bit extended precision), +// binary128, and ibm128 formats. +#define LDK_UNSUPPORTED 0 +#define LDK_BINARY64 1 +#define LDK_FLOAT80 2 +#define LDK_BINARY128 3 +#define LDK_IBM128 4 + +#if __LDBL_MANT_DIG__ == __DBL_MANT_DIG__ +# define LONG_DOUBLE_KIND LDK_BINARY64 +#elif defined(__SIZEOF_INT128__) +// The Ryu routines need a 128-bit integer type in order to do shortest +// formatting of types larger than 64-bit double, so without __int128 we can't +// support any large long double format. This is the case for e.g. i386. +# if __LDBL_MANT_DIG__ == 64 +# define LONG_DOUBLE_KIND LDK_FLOAT80 +# elif __LDBL_MANT_DIG__ == 113 +# define LONG_DOUBLE_KIND LDK_BINARY128 +# elif __LDBL_MANT_DIG__ == 106 +# define LONG_DOUBLE_KIND LDK_IBM128 +# endif +#endif +#if !defined(LONG_DOUBLE_KIND) +# define LONG_DOUBLE_KIND LDK_UNSUPPORTED +#endif + +namespace +{ + namespace ryu + { +#include "ryu/common.h" +#include "ryu/digit_table.h" +#include "ryu/d2s_intrinsics.h" +#include "ryu/d2s_full_table.h" +#include "ryu/d2fixed_full_table.h" +#include "ryu/f2s_intrinsics.h" +#include "ryu/d2s.c" +#include "ryu/d2fixed.c" +#include "ryu/f2s.c" + +#ifdef __SIZEOF_INT128__ + namespace generic128 + { + // Put the generic Ryu bits in their own namespace to avoid name conflicts. +# include "ryu/generic_128.h" +# include "ryu/ryu_generic_128.h" +# include "ryu/generic_128.c" + } // namespace generic128 + + using generic128::floating_decimal_128; + using generic128::generic_binary_to_decimal; + + int + to_chars(const floating_decimal_128 v, char* const result) + { return generic128::generic_to_chars(v, result); } +#endif + } // namespace ryu + + // A traits class that contains pertinent information about the binary + // format of each of the floating-point types we support. + template<typename T> + struct floating_type_traits + { }; + + template<> + struct floating_type_traits<float> + { + // We (and Ryu) assume float has the IEEE binary32 format. + static_assert(__FLT_MANT_DIG__ == 24); + static constexpr int mantissa_bits = 23; + static constexpr int exponent_bits = 8; + static constexpr bool has_implicit_leading_bit = true; + using mantissa_t = uint32_t; + using shortest_scientific_t = ryu::floating_decimal_32; + + static constexpr uint64_t pow10_adjustment_tab[] + = { 0b0000000000011101011100110101100101101110000000000000000000000000 }; + }; + + template<> + struct floating_type_traits<double> + { + // We (and Ryu) assume double has the IEEE binary64 format. + static_assert(__DBL_MANT_DIG__ == 53); + static constexpr int mantissa_bits = 52; + static constexpr int exponent_bits = 11; + static constexpr bool has_implicit_leading_bit = true; + using mantissa_t = uint64_t; + using shortest_scientific_t = ryu::floating_decimal_64; + + static constexpr uint64_t pow10_adjustment_tab[] + = { 0b0000000000000000000000011000110101110111000001100101110000111100, + 0b0111100011110101011000011110000000110110010101011000001110011111, + 0b0101101100000000011100100100111100110110110100010001010101110000, + 0b0011110010111000101111110101100011101100010001010000000101100111, + 0b0001010000011001011100100001010000010101101000001101000000000000 }; + }; + +#if LONG_DOUBLE_KIND == LDK_BINARY64 + // When long double is equivalent to double, we just forward the long double + // overloads to the double overloads, so we don't need to define a a + // floating_type_traits<long double> specialization in this case. +#elif LONG_DOUBLE_KIND == LDK_FLOAT80 + template<> + struct floating_type_traits<long double> + { + static constexpr int mantissa_bits = 64; + static constexpr int exponent_bits = 15; + static constexpr bool has_implicit_leading_bit = false; + using mantissa_t = uint64_t; + using shortest_scientific_t = ryu::floating_decimal_128; + + static constexpr uint64_t pow10_adjustment_tab[] + = { 0b0000000000000000000000000000110101011111110100010100110000011101, + 0b1001100101001111010011011111101000101111110001011001011101110000, + 0b0000101111111011110010001000001010111101011110111111010100011001, + 0b0011100000011111001101101011111001111100100010000101001111101001, + 0b0100100100000000100111010010101110011000110001101101110011001010, + 0b0111100111100010100000010011000010010110101111110101000011110100, + 0b1010100111100010011110000011011101101100010110000110101010101010, + 0b0000001111001111000000101100111011011000101000110011101100110010, + 0b0111000011100100101101010100001101111110101111001000010011111111, + 0b0010111000100110100100100010101100111010110001101010010111001000, + 0b0000100000010110000011001001000111000001111010100101101000001111, + 0b0010101011101000111100001011000010011101000101010010010000101111, + 0b1011111011101101110010101011010001111000101000101101011001100011, + 0b1010111011011011110111110011001010000010011001110100101101000101, + 0b0011000001110110011010010000011100100011001011001100001101010110, + 0b0100011111011000111111101000011110000010111110101001000000001001, + 0b1110000001110001001101101110011000100000001010000111100010111010, + 0b1110001001010011101000111000001000010100110000010110100011110000, + 0b0000011010110000110001111000011111000011001101001101001001000110, + 0b1010010111001000101001100101010110100100100010010010000101000010, + 0b1011001110000111100010100110000011100011111001110111001100000101, + 0b0110101001001000010110001000010001010101110101100001111100011001, + 0b1111100011110101011110011010101001010010100011000010110001101001, + 0b0100000100001000111101011100010011011111011001000000001100011000, + 0b1110111111000111100101110111110000000011001110011100011011011001, + 0b1100001100100000010001100011011000111011110000110011010101000011, + 0b1111111011100111011101001111111000010000001111010111110010000100, + 0b1110111001111110101111000101000000001010001110011010001000111010, + 0b1000010001011000101111111010110011111101110101101001111000111010, + 0b0100000111101001000111011001101000001010111011101001101111000100, + 0b0000011100110001000111011100111100110001101111111010110111100000, + 0b0000011101011100100110010011110101010100010011110010010111010000, + 0b0011011001100111110101111100001001101110101101001110110011110110, + 0b1011000101000001110100111001100100111100110011110000000001101000, + 0b1011100011110100001001110101010110111001000000001011101001011110, + 0b1111001010010010100000010110101010101011101000101000000000001100, + 0b1000001111100100111001110101100001010011111111000001000011110000, + 0b0001011101001000010000101101111000001110101100110011001100110111, + 0b1110011100000010101011011111001010111101111110100000011100000011, + 0b1001110110011100101010011110100010110001001110110000101011100110, + 0b1001101000100011100111010000011011100001000000110101100100001001, + 0b1010111000101000101101010111000010001100001010100011111100000100, + 0b0111101000100011000101101011111011100010001101110111001111001011, + 0b1110100111010110001110110110000000010110100011110000010001111100, + 0b1100010100011010001011001000111001010101011110100101011001000000, + 0b0000110001111001100110010110111010101101001101000000000010010101, + 0b0001110111101000001111101010110010010000111110111100000111110100, + 0b0111110111001001111000110001101101001010101110110101111110000100, + 0b0000111110111010101111100010111010011100010110011011011001000001, + 0b1010010100100100101110111111111000101100000010111111101101000110, + 0b1000100111111101100011001101000110001000000100010101010100001101, + 0b1100101010101000111100101100001000110001110010100000000010110101, + 0b1010000100111101100100101010010110100010000000110101101110000100, + 0b1011111011110001110000100100000000001010111010001101100000100100, + 0b0111101101100011001110011100000001000101101101111000100111011111, + 0b0100111010010011011001010011110100001100111010010101111111100011, + 0b0010001001011000111000001100110111110111110010100011000110110110, + 0b0101010110000000010000100000110100111011111101000100000111010010, + 0b0110000011011101000001010100110101101110011100110101000000001001, + 0b1101100110100000011000001111000100100100110001100110101010101100, + 0b0010100101010110010010001010101000011111111111001011001010001111, + 0b0111001010001111001100111001010101001000110101000011110000001000, + 0b0110010011001001001111110001010010001011010010001101110110110011, + 0b0110010100111011000100111000001001101011111001110010111110111111, + 0b0101110111001001101100110100101001110010101110011001101110001000, + 0b0100110101010111011010001100010111100011010011111001010100111000, + 0b0111000110110111011110100100010111000110000110110110110001111110, + 0b1000101101010100100100111110100011110110110010011001110011110101, + 0b1001101110101001010100111101101011000101000010110101101111110000, + 0b0100100101001011011001001011000010001101001010010001010110101000, + 0b0010100001001011100110101000010110000111000111000011100101011011, + 0b0110111000011001111101101011111010001000000010101000101010011110, + 0b1000110110100001111011000001111100001001000000010110010100100100, + 0b1001110100011111100111101011010000010101011100101000010010100110, + 0b0001010110101110100010101010001110110110100011101010001001111100, + 0b1010100101101100000010110011100110100010010000100100001110000100, + 0b0001000000010000001010000010100110000001110100111001110111101101, + 0b1100000000000000000000000000000000000000000000000000000000000000 }; + }; +#elif LONG_DOUBLE_KIND == LDK_BINARY128 + template<> + struct floating_type_traits<long double> + { + static constexpr int mantissa_bits = 112; + static constexpr int exponent_bits = 15; + static constexpr bool has_implicit_leading_bit = true; + using mantissa_t = unsigned __int128; + using shortest_scientific_t = ryu::floating_decimal_128; + + static constexpr uint64_t pow10_adjustment_tab[] + = { 0b0000000000000000000000000000000000000000000000000100000010000000, + 0b1011001111110100000100010101101110011100100110000110010110011000, + 0b1010100010001101111111000000001101010010100010010000111011110111, + 0b1011111001110001111000011111000010110111000111110100101010100101, + 0b0110100110011110011011000011000010011001110001001001010011100011, + 0b0000011111110010101111101011101010000110011111100111001110100111, + 0b0100010101010110000010111011110100000010011001001010001110111101, + 0b1101110111000010001101100000110100000111001001101011000101011011, + 0b0100111011101101010000001101011000101100101110010010110000101011, + 0b0100000110111000000110101000010011101000110100010110000011101101, + 0b1011001101001000100001010001100100001111011101010101110001010110, + 0b1000000001000000101001110010110010001111101101010101001100000110, + 0b0101110110100110000110000001001010111110001110010000111111010011, + 0b1010001111100111000100011100100100111100100101000001011001000111, + 0b1010011000011100110101100111001011100101111111100001110100000100, + 0b1100011100100010100000110001001010000000100000001001010111011101, + 0b0101110000100011001111101101000000100110000010010111010001111010, + 0b0100111100011010110111101000100110000111001001101100000001111100, + 0b1100100100111110101011000100000101011010110111000111110100110101, + 0b0110010000010111010100110011000000111010000010111011010110000100, + 0b0101001001010010110111010111000101011100000111100111000001110010, + 0b1101111111001011101010110001000111011010111101001011010110100100, + 0b0001000100110000011111101011001101110010110110010000000011100100, + 0b0001000000000101001001001000000000011000100011001110101001001110, + 0b0010010010001000111010011011100001000110011011011110110100111000, + 0b0000100110101100000111100010100100011100110111011100001111001100, + 0b1011111010001110001100000011110111111111100000001011111111101100, + 0b0000011100001111010101110000100110111100101101110111101001000001, + 0b1100010001110110111100001001001101101000011100000010110101001011, + 0b0100101001101011111001011110101101100011011111011100101010101111, + 0b0001101001111001110000101101101100001011010001011110011101000010, + 0b1111000000101001101111011010110011101110100001011011001011100010, + 0b0101001010111101101100001111100010010110001101001000001101100100, + 0b0101100101011110001100101011111000111001111001001001101101100001, + 0b1111001101010010100100011011000110110010001111000111010001001101, + 0b0001110010011000000001000110110111011000011100001000011001110111, + 0b0100001011011011011011110011101100100101111111101100101000001110, + 0b0101011110111101010111100111101111000101111111111110100011011010, + 0b1110101010001001110100000010110111010111111010111110100110010110, + 0b1010001111100001001100101000110100001100011100110010000011010111, + 0b1111111101101111000100111100000101011000001110011011101010111001, + 0b1111101100001110100101111101011001000100000101110000110010100011, + 0b1001010110110101101101000101010001010000101011011111010011010000, + 0b0111001110110011101001100111000001000100001010110000010000001101, + 0b0101111100111110100111011001111001111011011110010111010011101010, + 0b1110111000000001100100111001100100110001011011001110101111110111, + 0b0001010001001101010111101010011111000011110001101101011001111111, + 0b0101000011100011010010001101100001011101011010100110101100100010, + 0b0001000101011000100101111100110110000101101101111000110001001011, + 0b0101100101001011011000010101000000010100011100101101000010011111, + 0b1000010010001011101001011010100010111011110100110011011000100111, + 0b1000011011100001010111010111010011101100100010010010100100101001, + 0b1001001001010111110101000010111010000000101111010100001010010010, + 0b0011011110110010010101111011000001000000000011011111000011111011, + 0b1011000110100011001110000001000100000001011100010111010010011110, + 0b0111101110110101110111110000011000000100011100011000101101101110, + 0b1001100101111011011100011110101011001111100111101010101010110111, + 0b1100110010010001100011001111010000000100011101001111011101001111, + 0b1000111001111010100101000010000100000001001100101010001011001101, + 0b0011101011110000110010100101010100110010100001000010101011111101, + 0b1100000000000110000010101011000000011101000110011111100010111111, + 0b0010100110000011011100010110111100010110101100110011101110001101, + 0b0010111101010011111000111001111100110111111100100011110001101110, + 0b1001110111001001101001001001011000010100110001000000100011010110, + 0b0011110101100111011011111100001000011001010100111100100101111010, + 0b0010001101000011000010100101110000010101101000100110000100001010, + 0b0010000010100110010101100101110011101111000111111111001001100001, + 0b0100111111011011011011100111111011000010011101101111011111110110, + 0b1111111111010110101011101000100101110100001110001001101011100111, + 0b1011111101000101110000111100100010111010100001010000010010110010, + 0b1111010101001011101011101010000100110110001110111100100110111111, + 0b1011001101000001001101000010101010010110010001100001011100011010, + 0b0101001011011101010001110100010000010001111100100100100001001101, + 0b0010100000111001100011000101100101000001111100111001101000000010, + 0b1011001111010101011001000100100110100100110111110100000110111000, + 0b0101011111010011100011010010111101110010100001111111100010001001, + 0b0010111011101100100000000000001111111010011101100111100001001101, + 0b1101000000000000000000000000000000000000000000000000000000000000 }; + }; +#elif LONG_DOUBLE_KIND == LDK_IBM128 + template<> + struct floating_type_traits<long double> + { + static constexpr int mantissa_bits = 105; + static constexpr int exponent_bits = 11; + static constexpr bool has_implicit_leading_bit = true; + using mantissa_t = unsigned __int128; + using shortest_scientific_t = ryu::floating_decimal_128; + + static constexpr uint64_t pow10_adjustment_tab[] + = { 0b0000000000000000000000000000000000000000000000001000000100000000, + 0b0000000000000000000100000000000000000000001000000000000000000010, + 0b0000100000000000000000001001000000000000000001100100000000000000, + 0b0011000000000000000000000000000001110000010000000000000000000000, + 0b0000100000000000001000000000000000000000000000100000000000000000 }; + }; +#endif + + // An IEEE-style decomposition of a floating-point value of type T. + template<typename T> + struct ieee_t + { + typename floating_type_traits<T>::mantissa_t mantissa; + uint32_t biased_exponent; + bool sign; + }; + + // Decompose the floating-point value into its IEEE components. + template<typename T> + ieee_t<T> + get_ieee_repr(const T value) + { + constexpr int mantissa_bits = floating_type_traits<T>::mantissa_bits; + constexpr int exponent_bits = floating_type_traits<T>::exponent_bits; + constexpr int total_bits = mantissa_bits + exponent_bits + 1; + + constexpr auto get_uint_t = [] { + if constexpr (total_bits <= 32) + return uint32_t{}; + else if constexpr (total_bits <= 64) + return uint64_t{}; +#ifdef __SIZEOF_INT128__ + else if constexpr (total_bits <= 128) + return (unsigned __int128){}; +#endif + }; + using uint_t = decltype(get_uint_t()); + uint_t value_bits = 0; + memcpy(&value_bits, &value, sizeof(value)); + + ieee_t<T> ieee_repr; + ieee_repr.mantissa = value_bits & ((uint_t{1} << mantissa_bits) - 1u); + ieee_repr.biased_exponent + = (value_bits >> mantissa_bits) & ((uint_t{1} << exponent_bits) - 1u); + ieee_repr.sign = (value_bits >> (mantissa_bits + exponent_bits)) & 1; + return ieee_repr; + } + +#if LONG_DOUBLE_KIND == LDK_IBM128 + template<> + ieee_t<long double> + get_ieee_repr(const long double value) + { + // The layout of __ibm128 isn't compatible with the standard IEEE format. + // So we transform it into an IEEE-compatible format, suitable for + // consumption by the generic Ryu API, with an 11-bit exponent and 105-bit + // mantissa (plus an implicit leading bit). We use the exponent and sign + // of the high part, and we merge the mantissa of the high part with the + // mantissa (and the implicit leading bit) of the low part. + using uint_t = unsigned __int128; + uint_t value_bits = 0; + memcpy(&value_bits, &value, sizeof(value_bits)); + + const uint64_t value_hi = value_bits; + const uint64_t value_lo = value_bits >> 64; + + uint64_t mantissa_hi = value_hi & ((1ull << 52) - 1); + unsigned exponent_hi = (value_hi >> 52) & ((1ull << 11) - 1); + const int sign_hi = (value_hi >> 63) & 1; + + uint64_t mantissa_lo = value_lo & ((1ull << 52) - 1); + const unsigned exponent_lo = (value_lo >> 52) & ((1ull << 11) - 1); + const int sign_lo = (value_lo >> 63) & 1; + + { + // The following code for adjusting the low-part mantissa to combine + // it with the high-part mantissa is taken from the glibc source file + // sysdeps/ieee754/ldbl-128ibm/printf_fphex.c. + mantissa_lo <<= 7; + if (exponent_lo != 0) + mantissa_lo |= (1ull << (52 + 7)); + else + mantissa_lo <<= 1; + + const int ediff = exponent_hi - exponent_lo - 53; + if (ediff > 63) + mantissa_lo = 0; + else if (ediff > 0) + mantissa_lo >>= ediff; + else if (ediff < 0) + mantissa_lo <<= -ediff; + + if (sign_lo != sign_hi && mantissa_lo != 0) + { + mantissa_lo = (1ull << 60) - mantissa_lo; + if (mantissa_hi == 0) + { + mantissa_hi = 0xffffffffffffeLL | (mantissa_lo >> 59); + mantissa_lo = 0xfffffffffffffffLL & (mantissa_lo << 1); + exponent_hi--; + } + else + mantissa_hi--; + } + } + + ieee_t<long double> ieee_repr; + ieee_repr.mantissa = ((uint_t{mantissa_hi} << 64) + | (uint_t{mantissa_lo} << 4)) >> 11; + ieee_repr.biased_exponent = exponent_hi; + ieee_repr.sign = sign_hi; + return ieee_repr; + } +#endif + + // Invoke Ryu to obtain the shortest scientific form for the given + // floating-point number. + template<typename T> + typename floating_type_traits<T>::shortest_scientific_t + floating_to_shortest_scientific(const T value) + { + if constexpr (std::is_same_v<T, float>) + return ryu::floating_to_fd32(value); + else if constexpr (std::is_same_v<T, double>) + return ryu::floating_to_fd64(value); +#ifdef __SIZEOF_INT128__ + else if constexpr (std::is_same_v<T, long double>) + { + constexpr int mantissa_bits + = floating_type_traits<T>::mantissa_bits; + constexpr int exponent_bits + = floating_type_traits<T>::exponent_bits; + constexpr bool has_implicit_leading_bit + = floating_type_traits<T>::has_implicit_leading_bit; + + const auto [mantissa, exponent, sign] = get_ieee_repr(value); + return ryu::generic_binary_to_decimal(mantissa, exponent, sign, + mantissa_bits, exponent_bits, + !has_implicit_leading_bit); + } +#endif + } + + // This subroutine returns true if the shortest scientific form fd is a + // positive power of 10, and the floating-point number that has this shortest + // scientific form is smaller than this power of 10. + // + // For instance, the exactly-representable 64-bit number + // 99999999999999991611392.0 has the shortest scientific form 1e23, so its + // exact value is smaller than its shortest scientific form. + // + // For these powers of 10 the length of the fixed form is one digit less + // than what the scientific exponent suggests. + // + // This subroutine inspects a lookup table to detect when fd is such a + // "rounded up" power of 10. + template<typename T> + bool + is_rounded_up_pow10_p(const typename + floating_type_traits<T>::shortest_scientific_t fd) + { + if (fd.exponent < 0 || fd.mantissa != 1) [[likely]] + return false; + + constexpr auto& pow10_adjustment_tab + = floating_type_traits<T>::pow10_adjustment_tab; + __glibcxx_assert(fd.exponent/64 < (int)std::size(pow10_adjustment_tab)); + return (pow10_adjustment_tab[fd.exponent/64] + & (1ull << (63 - fd.exponent%64))); + } + + int + get_mantissa_length(const ryu::floating_decimal_32 fd) + { return ryu::decimalLength9(fd.mantissa); } + + int + get_mantissa_length(const ryu::floating_decimal_64 fd) + { return ryu::decimalLength17(fd.mantissa); } + +#ifdef __SIZEOF_INT128__ + int + get_mantissa_length(const ryu::floating_decimal_128 fd) + { return ryu::generic128::decimalLength(fd.mantissa); } +#endif +} // anon namespace + +namespace std _GLIBCXX_VISIBILITY(default) +{ +_GLIBCXX_BEGIN_NAMESPACE_VERSION + +// This subroutine of __floating_to_chars_* handles writing nan, inf and 0 in +// all formatting modes. +template<typename T> + static optional<to_chars_result> + __handle_special_value(char* first, char* const last, const T value, + const chars_format fmt, const int precision) + { + __glibcxx_assert(precision >= 0); + + string_view str; + switch (__builtin_fpclassify(FP_NAN, FP_INFINITE, FP_NORMAL, FP_SUBNORMAL, + FP_ZERO, value)) + { + case FP_INFINITE: + str = "-inf"; + break; + + case FP_NAN: + str = "-nan"; + break; + + case FP_ZERO: + break; + + default: + case FP_SUBNORMAL: + case FP_NORMAL: [[likely]] + return nullopt; + } + + if (!str.empty()) + { + // We're formatting +-inf or +-nan. + if (!__builtin_signbit(value)) + str.remove_prefix(strlen("-")); + + if (last - first < (int)str.length()) + return {{last, errc::value_too_large}}; + + memcpy(first, &str[0], str.length()); + first += str.length(); + return {{first, errc{}}}; + } + + // We're formatting 0. + __glibcxx_assert(value == 0); + const auto orig_first = first; + const bool sign = __builtin_signbit(value); + int expected_output_length; + switch (fmt) + { + case chars_format::fixed: + case chars_format::scientific: + case chars_format::hex: + expected_output_length = sign + 1; + if (precision) + expected_output_length += strlen(".") + precision; + if (fmt == chars_format::scientific) + expected_output_length += strlen("e+00"); + else if (fmt == chars_format::hex) + expected_output_length += strlen("p+0"); + if (last - first < expected_output_length) + return {{last, errc::value_too_large}}; + + if (sign) + *first++ = '-'; + *first++ = '0'; + if (precision) + { + *first++ = '.'; + memset(first, '0', precision); + first += precision; + } + if (fmt == chars_format::scientific) + { + memcpy(first, "e+00", 4); + first += 4; + } + else if (fmt == chars_format::hex) + { + memcpy(first, "p+0", 3); + first += 3; + } + break; + + case chars_format::general: + default: // case chars_format{}: + expected_output_length = sign + 1; + if (last - first < expected_output_length) + return {{last, errc::value_too_large}}; + + if (sign) + *first++ = '-'; + *first++ = '0'; + break; + } + __glibcxx_assert(first - orig_first == expected_output_length); + return {{first, errc{}}}; + } + +// This subroutine of the floating-point to_chars overloads performs +// hexadecimal formatting. +template<typename T> + static to_chars_result + __floating_to_chars_hex(char* first, char* const last, const T value, + const optional<int> precision) + { + if (precision.has_value() && precision.value() < 0) [[unlikely]] + // A negative precision argument is treated as if it were omitted. + return __floating_to_chars_hex(first, last, value, nullopt); + + __glibcxx_requires_valid_range(first, last); + + constexpr int mantissa_bits = floating_type_traits<T>::mantissa_bits; + constexpr bool has_implicit_leading_bit + = floating_type_traits<T>::has_implicit_leading_bit; + constexpr int exponent_bits = floating_type_traits<T>::exponent_bits; + constexpr int exponent_bias = (1u << (exponent_bits - 1)) - 1; + using mantissa_t = typename floating_type_traits<T>::mantissa_t; + constexpr int mantissa_t_width = sizeof(mantissa_t) * __CHAR_BIT__; + + if (auto result = __handle_special_value(first, last, value, + chars_format::hex, + precision.value_or(0))) + return *result; + + // Extract the sign, mantissa and exponent from the value. + const auto [ieee_mantissa, biased_exponent, sign] = get_ieee_repr(value); + const bool is_normal_number = (biased_exponent != 0); + + // Calculate the unbiased exponent. + const int32_t unbiased_exponent = (is_normal_number + ? biased_exponent - exponent_bias + : 1 - exponent_bias); + + // Shift the mantissa so that its bitwidth is a multiple of 4. + constexpr unsigned rounded_mantissa_bits = (mantissa_bits + 3) / 4 * 4; + static_assert(mantissa_t_width >= rounded_mantissa_bits); + mantissa_t effective_mantissa + = ieee_mantissa << (rounded_mantissa_bits - mantissa_bits); + if (is_normal_number) + { + if constexpr (has_implicit_leading_bit) + // Restore the mantissa's implicit leading bit. + effective_mantissa |= mantissa_t{1} << rounded_mantissa_bits; + else + // The explicit mantissa bit should already be set. + __glibcxx_assert(effective_mantissa & (mantissa_t{1} << (mantissa_bits + - 1u))); + } + + // Compute the shortest precision needed to print this value exactly, + // disregarding trailing zeros. + constexpr int full_hex_precision = (has_implicit_leading_bit + ? (mantissa_bits + 3) / 4 + // With an explicit leading bit, we + // use the four leading nibbles as the + // hexit before the decimal point. + : (mantissa_bits - 4 + 3) / 4); + const int trailing_zeros = __countr_zero(effective_mantissa) / 4; + const int shortest_full_precision = full_hex_precision - trailing_zeros; + __glibcxx_assert(shortest_full_precision >= 0); + + int written_exponent = unbiased_exponent; + const int effective_precision = precision.value_or(shortest_full_precision); + if (effective_precision < shortest_full_precision) + { + // When limiting the precision, we need to determine how to round the + // least significant printed hexit. The following branchless + // bit-level-parallel technique computes whether to round up the + // mantissa bit at index N (according to round-to-nearest rules) when + // dropping N bits of precision, for each index N in the bit vector. + // This technique is borrowed from the MSVC implementation. + using bitvec = mantissa_t; + const bitvec round_bit = effective_mantissa << 1; + const bitvec has_tail_bits = round_bit - 1; + const bitvec lsb_bit = effective_mantissa; + const bitvec should_round = round_bit & (has_tail_bits | lsb_bit); + + const int dropped_bits = 4*(full_hex_precision - effective_precision); + // Mask out the dropped nibbles. + effective_mantissa >>= dropped_bits; + effective_mantissa <<= dropped_bits; + if (should_round & (mantissa_t{1} << dropped_bits)) + { + // Round up the least significant nibble. + effective_mantissa += mantissa_t{1} << dropped_bits; + // Check and adjust for overflow of the leading nibble. When the + // type has an implicit leading bit, then the leading nibble + // before rounding is either 0 or 1, so it can't overflow. + if constexpr (!has_implicit_leading_bit) + { + // The only supported floating-point type with explicit + // leading mantissa bit is LDK_FLOAT80, i.e. x86 80-bit + // extended precision, and so we hardcode the below overflow + // check+adjustment for this type. + static_assert(mantissa_t_width == 64 + && rounded_mantissa_bits == 64); + if (effective_mantissa == 0) + { + // We rounded up the least significant nibble and the + // mantissa overflowed, e.g f.fcp+10 with precision=1 + // became 10.0p+10. Absorb this extra hexit into the + // exponent to obtain 1.0p+14. + effective_mantissa + = mantissa_t{1} << (rounded_mantissa_bits - 4); + written_exponent += 4; + } + } + } + } + + // Compute the leading hexit and mask it out from the mantissa. + char leading_hexit; + if constexpr (has_implicit_leading_bit) + { + const unsigned nibble = effective_mantissa >> rounded_mantissa_bits; + __glibcxx_assert(nibble <= 2); + leading_hexit = '0' + nibble; + effective_mantissa &= ~(mantissa_t{0b11} << rounded_mantissa_bits); + } + else + { + const unsigned nibble = effective_mantissa >> (rounded_mantissa_bits-4); + __glibcxx_assert(nibble < 16); + leading_hexit = "0123456789abcdef"[nibble]; + effective_mantissa &= ~(mantissa_t{0b1111} << (rounded_mantissa_bits-4)); + written_exponent -= 3; + } + + // Now before we start writing the string, determine the total length of + // the output string and perform a single bounds check. + int expected_output_length = sign + 1; + if (effective_precision != 0) + expected_output_length += strlen(".") + effective_precision; + const int abs_written_exponent = abs(written_exponent); + expected_output_length += (abs_written_exponent >= 10000 ? strlen("p+ddddd") + : abs_written_exponent >= 1000 ? strlen("p+dddd") + : abs_written_exponent >= 100 ? strlen("p+ddd") + : abs_written_exponent >= 10 ? strlen("p+dd") + : strlen("p+d")); + if (last - first < expected_output_length) + return {last, errc::value_too_large}; + + const auto saved_first = first; + // Write the negative sign and the leading hexit. + if (sign) + *first++ = '-'; + *first++ = leading_hexit; + + if (effective_precision > 0) + { + *first++ = '.'; + int written_hexits = 0; + // Extract and mask out the leading nibble after the decimal point, + // write its corresponding hexit, and repeat until the mantissa is + // empty. + int nibble_offset = rounded_mantissa_bits; + if constexpr (!has_implicit_leading_bit) + // We already printed the entire leading hexit. + nibble_offset -= 4; + while (effective_mantissa != 0) + { + nibble_offset -= 4; + const unsigned nibble = effective_mantissa >> nibble_offset; + __glibcxx_assert(nibble < 16); + *first++ = "0123456789abcdef"[nibble]; + ++written_hexits; + effective_mantissa &= ~(mantissa_t{0b1111} << nibble_offset); + } + __glibcxx_assert(nibble_offset >= 0); + __glibcxx_assert(written_hexits <= effective_precision); + // Since the mantissa is now empty, every hexit hereafter must be '0'. + if (int remaining_hexits = effective_precision - written_hexits) + { + memset(first, '0', remaining_hexits); + first += remaining_hexits; + } + } + + // Finally, write the exponent. + *first++ = 'p'; + if (written_exponent >= 0) + *first++ = '+'; + const to_chars_result result = to_chars(first, last, written_exponent); + __glibcxx_assert(result.ec == errc{} + && result.ptr == saved_first + expected_output_length); + return result; + } + +template<typename T> + static to_chars_result + __floating_to_chars_shortest(char* first, char* const last, const T value, + chars_format fmt) + { + if (fmt == chars_format::hex) + return __floating_to_chars_hex(first, last, value, nullopt); + + __glibcxx_assert(fmt == chars_format::fixed + || fmt == chars_format::scientific + || fmt == chars_format::general + || fmt == chars_format{}); + __glibcxx_requires_valid_range(first, last); + + if (auto result = __handle_special_value(first, last, value, fmt, 0)) + return *result; + + const auto fd = floating_to_shortest_scientific(value); + const int mantissa_length = get_mantissa_length(fd); + const int scientific_exponent = fd.exponent + mantissa_length - 1; + + if (fmt == chars_format::general) + { + // Resolve the 'general' formatting mode as per the specification of + // the 'g' printf output specifier. Since there is no precision + // argument, the default precision of the 'g' specifier, 6, applies. + if (scientific_exponent >= -4 && scientific_exponent < 6) + fmt = chars_format::fixed; + else + fmt = chars_format::scientific; + } + else if (fmt == chars_format{}) + { + // The 'plain' formatting mode resolves to 'scientific' if it yields + // the shorter string, and resolves to 'fixed' otherwise. The + // following lower and upper bounds on the exponent characterize when + // to prefer 'fixed' over 'scientific'. + int lower_bound = -(mantissa_length + 3); + int upper_bound = 5; + if (mantissa_length == 1) + // The decimal point in scientific notation will be omitted in this + // case; tighten the bounds appropriately. + ++lower_bound, --upper_bound; + + if (fd.exponent >= lower_bound && fd.exponent <= upper_bound) + fmt = chars_format::fixed; + else + fmt = chars_format::scientific; + } + + if (fmt == chars_format::scientific) + { + // Calculate the total length of the output string, perform a bounds + // check, and then defer to Ryu's to_chars subroutine. + int expected_output_length = fd.sign + mantissa_length; + if (mantissa_length > 1) + expected_output_length += strlen("."); + const int abs_exponent = abs(scientific_exponent); + expected_output_length += (abs_exponent >= 1000 ? strlen("e+dddd") + : abs_exponent >= 100 ? strlen("e+ddd") + : strlen("e+dd")); + if (last - first < expected_output_length) + return {last, errc::value_too_large}; + + const int output_length = ryu::to_chars(fd, first); + __glibcxx_assert(output_length == expected_output_length); + return {first + output_length, errc{}}; + } + else if (fmt == chars_format::fixed && fd.exponent >= 0) + { + // The Ryu exponent is positive, and so this number's shortest + // representation is a whole number, to be formatted in fixed instead + // of scientific notation "as if by std::printf". This means we may + // need to print more digits of the IEEE mantissa than what the + // shortest scientific form given by Ryu provides. + // + // For instance, the exactly representable number + // 12300000000000001048576.0 has as its shortest scientific + // representation 123e+22, so in this case fd.mantissa is 123 and + // fd.exponent is 22, which doesn't have enough information to format + // the number exactly. So we defer to Ryu's d2fixed_buffered_n with + // precision=0 to format the number in the general case here. + + // To that end, first compute the output length and perform a bounds + // check. + int expected_output_length = fd.sign + mantissa_length + fd.exponent; + if (is_rounded_up_pow10_p<T>(fd)) + --expected_output_length; + if (last - first < expected_output_length) + return {last, errc::value_too_large}; + + // Optimization: if the shortest representation fits inside the IEEE + // mantissa, then the number is certainly exactly-representable and + // its shortest scientific form must be equal to its exact form. So + // we can write the value in fixed form exactly via fd.mantissa and + // fd.exponent. + // + // Taking log2 of both sides of the desired condition + // fd.mantissa * 10^fd.exponent < 2^mantissa_bits + // we get + // log2 fd.mantissa + fd.exponent * log2 10 < mantissa_bits + // where log2 10 is slightly smaller than 10/3=3.333... + // + // After adding some wiggle room due to rounding we get the condition + // value_fits_inside_mantissa_p below. + const int log2_mantissa = __bit_width(fd.mantissa) - 1; + const bool value_fits_inside_mantissa_p + = (log2_mantissa + (fd.exponent*10 + 2) / 3 + < floating_type_traits<T>::mantissa_bits - 2); + if (value_fits_inside_mantissa_p) + { + // Print the small exactly-represantable number in fixed form by + // writing out fd.mantissa followed by fd.exponent many 0s. + if (fd.sign) + *first++ = '-'; + to_chars_result result = to_chars(first, last, fd.mantissa); + __glibcxx_assert(result.ec == errc{}); + memset(result.ptr, '0', fd.exponent); + result.ptr += fd.exponent; + const int output_length = fd.sign + (result.ptr - first); + __glibcxx_assert(output_length == expected_output_length); + return result; + } + else if constexpr (is_same_v<T, long double>) + { + // We can't use d2fixed_buffered_n for types larger than double, + // so we instead format larger types through sprintf. + // TODO: We currently go through an intermediate buffer in order + // to accomodate the mandatory null terminator of sprintf, but we + // can avoid this if we use sprintf to write all but the last + // digit, and carefully compute and write the last digit + // ourselves. + char buffer[expected_output_length+1]; +#if _GLIBCXX_USE_C99_FENV_TR1 + const int saved_rounding_mode = fegetround(); + if (saved_rounding_mode != FE_TONEAREST) + fesetround(FE_TONEAREST); // We want round-to-nearest behavior. +#endif + const int output_length = sprintf(buffer, "%.0Lf", value); +#if _GLIBCXX_USE_C99_FENV_TR1 + if (saved_rounding_mode != FE_TONEAREST) + fesetround(saved_rounding_mode); +#endif + __glibcxx_assert(output_length == expected_output_length); + memcpy(first, buffer, output_length); + return {first + output_length, errc{}}; + } + else + { + // Otherwise, the number is too big, so defer to d2fixed_buffered_n. + const int output_length = ryu::d2fixed_buffered_n(value, 0, first); + __glibcxx_assert(output_length == expected_output_length); + return {first + output_length, errc{}}; + } + } + else if (fmt == chars_format::fixed && fd.exponent < 0) + { + // The Ryu exponent is negative, so fd.mantissa definitely contains + // all of the whole part of the number, and therefore fd.mantissa and + // fd.exponent contain all of the information needed to format the + // number in fixed notation "as if by std::printf" (with precision + // equal to -fd.exponent). + const int whole_digits = max(mantissa_length + fd.exponent, 1); + const int expected_output_length + = fd.sign + whole_digits + strlen(".") + -fd.exponent; + if (last - first < expected_output_length) + return {last, errc::value_too_large}; + if (mantissa_length <= -fd.exponent) + { + // The magnitude of the number is less than one. Format the + // number appropriately. + const auto orig_first = first; + if (fd.sign) + *first++ = '-'; + *first++ = '0'; + *first++ = '.'; + const int leading_zeros = -fd.exponent - mantissa_length; + memset(first, '0', leading_zeros); + first += leading_zeros; + const to_chars_result result = to_chars(first, last, fd.mantissa); + const int output_length = result.ptr - orig_first; + __glibcxx_assert(output_length == expected_output_length + && result.ec == errc{}); + return result; + } + else + { + // The magnitude of the number is at least one. + const auto orig_first = first; + if (fd.sign) + *first++ = '-'; + to_chars_result result = to_chars(first, last, fd.mantissa); + __glibcxx_assert(result.ec == errc{}); + // Make space for and write the decimal point in the correct spot. + memmove(&result.ptr[fd.exponent+1], &result.ptr[fd.exponent], + -fd.exponent); + result.ptr[fd.exponent] = '.'; + const int output_length = result.ptr + 1 - orig_first; + __glibcxx_assert(output_length == expected_output_length); + ++result.ptr; + return result; + } + } + + __glibcxx_assert(false); + } + +template<typename T> + static to_chars_result + __floating_to_chars_precision(char* first, char* const last, const T value, + chars_format fmt, const int precision) + { + if (fmt == chars_format::hex) + return __floating_to_chars_hex(first, last, value, precision); + + if (precision < 0) [[unlikely]] + // A negative precision argument is treated as if it were omitted, in + // which case the default precision of 6 applies, as per the printf + // specification. + return __floating_to_chars_precision(first, last, value, fmt, 6); + + __glibcxx_assert(fmt == chars_format::fixed + || fmt == chars_format::scientific + || fmt == chars_format::general); + __glibcxx_requires_valid_range(first, last); + + if (auto result = __handle_special_value(first, last, value, + fmt, precision)) + return *result; + + constexpr int mantissa_bits = floating_type_traits<T>::mantissa_bits; + constexpr int exponent_bits = floating_type_traits<T>::exponent_bits; + constexpr int exponent_bias = (1u << (exponent_bits - 1)) - 1; + + // Extract the sign and exponent from the value. + const auto [mantissa, biased_exponent, sign] = get_ieee_repr(value); + const bool is_normal_number = (biased_exponent != 0); + + // Calculate the unbiased exponent. + const int32_t unbiased_exponent = (is_normal_number + ? biased_exponent - exponent_bias + : 1 - exponent_bias); + + // Obtain trunc(log2(abs(value))), which is just the unbiased exponent. + const int floor_log2_value = unbiased_exponent; + // This is within +-1 of log10(abs(value)). Note that log10 2 is 0.3010.. + const int approx_log10_value = (floor_log2_value >= 0 + ? (floor_log2_value*301 + 999)/1000 + : (floor_log2_value*301 - 999)/1000); + + // Compute (an upper bound of) the number's effective precision when it is + // formatted in scientific and fixed notation. Beyond this precision all + // digits are definitely zero, and this fact allows us to bound the sizes + // of any local output buffers that we may need to use. TODO: Consider + // the number of trailing zero bits in the mantissa to obtain finer upper + // bounds. + // ???: Using "mantissa_bits + 1" instead of just "mantissa_bits" in the + // bounds below is necessary only for __ibm128, it seems. Even though the + // type has 105 bits of precision, printf may output 106 fractional digits + // on some inputs, e.g. 0x1.bcd19f5d720d12a3513e3301028p+0. + const int max_eff_scientific_precision + = (floor_log2_value >= 0 + ? max(mantissa_bits + 1, approx_log10_value + 1) + : -(7*floor_log2_value + 9)/10 + 2 + mantissa_bits + 1); + __glibcxx_assert(max_eff_scientific_precision > 0); + + const int max_eff_fixed_precision + = (floor_log2_value >= 0 + ? mantissa_bits + 1 + : -floor_log2_value + mantissa_bits + 1); + __glibcxx_assert(max_eff_fixed_precision > 0); + + // Ryu doesn't support formatting floating-point types larger than double + // with an explicit precision, so instead we just go through printf. + if constexpr (is_same_v<T, long double>) + { + int effective_precision; + const char* output_specifier; + if (fmt == chars_format::scientific) + { + effective_precision = min(precision, max_eff_scientific_precision); + output_specifier = "%.*Le"; + } + else if (fmt == chars_format::fixed) + { + effective_precision = min(precision, max_eff_fixed_precision); + output_specifier = "%.*Lf"; + } + else if (fmt == chars_format::general) + { + effective_precision = min(precision, max_eff_scientific_precision); + output_specifier = "%.*Lg"; + } + const int excess_precision = (fmt != chars_format::general + ? precision - effective_precision : 0); + + // Since the output of printf is locale-sensitive, we need to be able + // to handle a radix point that's different from '.'. + char radix[6] = {'.', '\0', '\0', '\0', '\0', '\0'}; + if (effective_precision > 0) + // ???: Can nl_langinfo() ever return null? + if (const char* const radix_ptr = nl_langinfo(RADIXCHAR)) + { + strncpy(radix, radix_ptr, sizeof(radix)-1); + // We accept only radix points which are at most 4 bytes (one + // UTF-8 character) wide. + __glibcxx_assert(radix[4] == '\0'); + } + + // Compute straightforward upper bounds on the output length. + int output_length_upper_bound; + if (fmt == chars_format::scientific || fmt == chars_format::general) + output_length_upper_bound = (strlen("-d") + sizeof(radix) + + effective_precision + + strlen("e+dddd")); + else if (fmt == chars_format::fixed) + { + if (approx_log10_value >= 0) + output_length_upper_bound = sign + approx_log10_value + 1; + else + output_length_upper_bound = sign + strlen("0"); + output_length_upper_bound += sizeof(radix) + effective_precision; + } + + // Do the sprintf into the local buffer. + char buffer[output_length_upper_bound+1]; +#if _GLIBCXX_USE_C99_FENV_TR1 + const int saved_rounding_mode = fegetround(); + if (saved_rounding_mode != FE_TONEAREST) + fesetround(FE_TONEAREST); // We want round-to-nearest behavior. +#endif + int output_length + = sprintf(buffer, output_specifier, effective_precision, value); +#if _GLIBCXX_USE_C99_FENV_TR1 + if (saved_rounding_mode != FE_TONEAREST) + fesetround(saved_rounding_mode); +#endif + __glibcxx_assert(output_length <= output_length_upper_bound); + + if (effective_precision > 0) + // We need to replace a radix that is different from '.' with '.'. + if (const string_view radix_sv = {radix}; radix_sv != ".") + { + const string_view buffer_sv = {buffer, (size_t)output_length}; + const size_t radix_index = buffer_sv.find(radix_sv); + if (radix_index != string_view::npos) + { + buffer[radix_index] = '.'; + if (radix_sv.length() > 1) + { + memmove(&buffer[radix_index + 1], + &buffer[radix_index + radix_sv.length()], + output_length - radix_index - radix_sv.length()); + output_length -= radix_sv.length() - 1; + } + } + } + + // Copy the string from the buffer over to the output range. + if (last - first < output_length + excess_precision) + return {last, errc::value_too_large}; + memcpy(first, buffer, output_length); + first += output_length; + + // Add the excess 0s to the result. + if (excess_precision > 0) + { + if (fmt == chars_format::scientific) + { + char* const significand_end + = (output_length >= 6 && first[-6] == 'e' ? &first[-6] + : first[-5] == 'e' ? &first[-5] + : &first[-4]); + __glibcxx_assert(*significand_end == 'e'); + memmove(significand_end + excess_precision, significand_end, + first - significand_end); + memset(significand_end, '0', excess_precision); + first += excess_precision; + } + else if (fmt == chars_format::fixed) + { + memset(first, '0', excess_precision); + first += excess_precision; + } + } + return {first, errc{}}; + } + else if (fmt == chars_format::scientific) + { + const int effective_precision + = min(precision, max_eff_scientific_precision); + const int excess_precision = precision - effective_precision; + + // We can easily compute the output length exactly whenever the + // scientific exponent is far enough away from +-100. But if it's + // near +-100, then our log2 approximation is too coarse (and doesn't + // consider precision-dependent rounding) in order to accurately + // distinguish between a scientific exponent of +-100 and +-99. + const bool scientific_exponent_near_100_p + = abs(abs(floor_log2_value) - 332) <= 4; + + // Compute an upper bound on the output length. TODO: Maybe also + // consider a lower bound on the output length. + int output_length_upper_bound = sign + strlen("d"); + if (effective_precision > 0) + output_length_upper_bound += strlen(".") + effective_precision; + if (scientific_exponent_near_100_p + || (floor_log2_value >= 332 || floor_log2_value <= -333)) + output_length_upper_bound += strlen("e+ddd"); + else + output_length_upper_bound += strlen("e+dd"); + + int output_length; + if (last - first >= output_length_upper_bound + excess_precision) + { + // The result will definitely fit into the output range, so we can + // write directly into it. + output_length = ryu::d2exp_buffered_n(value, effective_precision, + first, nullptr); + __glibcxx_assert(output_length == output_length_upper_bound + || (scientific_exponent_near_100_p + && (output_length + == output_length_upper_bound - 1))); + } + else if (scientific_exponent_near_100_p) + { + // Write the result of d2exp_buffered_n into an intermediate + // buffer, do a bounds check, and copy the result into the output + // range. + char buffer[output_length_upper_bound]; + output_length = ryu::d2exp_buffered_n(value, effective_precision, + buffer, nullptr); + __glibcxx_assert(output_length == output_length_upper_bound - 1 + || output_length == output_length_upper_bound); + if (last - first < output_length + excess_precision) + return {last, errc::value_too_large}; + memcpy(first, buffer, output_length); + } + else + // If the scientific exponent is not near 100, then the upper bound + // is actually the exact length, and so the result will definitely + // not fit into the output range. + return {last, errc::value_too_large}; + first += output_length; + if (excess_precision > 0) + { + // Splice the excess zeros into the result. + char* const significand_end = (first[-5] == 'e' + ? &first[-5] : &first[-4]); + __glibcxx_assert(*significand_end == 'e'); + memmove(significand_end + excess_precision, significand_end, + first - significand_end); + memset(significand_end, '0', excess_precision); + first += excess_precision; + } + return {first, errc{}}; + } + else if (fmt == chars_format::fixed) + { + const int effective_precision + = min(precision, max_eff_fixed_precision); + const int excess_precision = precision - effective_precision; + + // Compute an upper bound on the output length. TODO: Maybe also + // consider a lower bound on the output length. + int output_length_upper_bound; + if (approx_log10_value >= 0) + output_length_upper_bound = sign + approx_log10_value + 1; + else + output_length_upper_bound = sign + strlen("0"); + if (effective_precision > 0) + output_length_upper_bound += strlen(".") + effective_precision; + + int output_length; + if (last - first >= output_length_upper_bound + excess_precision) + { + // The result will definitely fit into the output range, so we can + // write directly into it. + output_length = ryu::d2fixed_buffered_n(value, effective_precision, + first); + __glibcxx_assert(output_length <= output_length_upper_bound); + } + else + { + // Write the result of d2fixed_buffered_n into an intermediate + // buffer, do a bounds check, and copy the result into the output + // range. + char buffer[output_length_upper_bound]; + output_length = ryu::d2fixed_buffered_n(value, effective_precision, + buffer); + __glibcxx_assert(output_length <= output_length_upper_bound); + if (last - first < output_length + excess_precision) + return {last, errc::value_too_large}; + memcpy(first, buffer, output_length); + } + first += output_length; + if (excess_precision > 0) + { + // Append the excess zeros into the result. + memset(first, '0', excess_precision); + first += excess_precision; + } + return {first, errc{}}; + } + else if (fmt == chars_format::general) + { + // Handle the 'general' formatting mode as per C11 printf's %g output + // specifier. Since Ryu doesn't do zero-trimming, we always write to + // an intermediate buffer and manually perform zero-trimming there + // before copying the result over to the output range. + int effective_precision + = min(precision, max_eff_scientific_precision + 1); + const int output_length_upper_bound + = strlen("-d.") + effective_precision + strlen("e+ddd"); + // The four bytes of headroom is to avoid needing to do a memmove when + // rewriting a scientific form such as 1.00e-2 into the equivalent + // fixed form 0.001. + char buffer[4 + output_length_upper_bound]; + + // 7.21.6.1/8: "Let P equal ... 1 if the precision is zero." + if (effective_precision == 0) + effective_precision = 1; + + // Perform a trial formatting in scientific form, and obtain the + // scientific exponent. + int scientific_exponent; + char* buffer_start = buffer + 4; + int output_length + = ryu::d2exp_buffered_n(value, effective_precision - 1, + buffer_start, &scientific_exponent); + __glibcxx_assert(output_length <= output_length_upper_bound); + + // 7.21.6.1/8: "Then, if a conversion with style E would have an + // exponent of X: + // if P > X >= -4, the conversion is with style f and + // precision P - (X + 1). + // otherwise, the conversion is with style e and precision P - 1." + const bool resolve_to_fixed_form + = (scientific_exponent >= -4 + && scientific_exponent < effective_precision); + if (resolve_to_fixed_form) + { + // Rather than invoking d2fixed_buffered_n to reformat the number + // for us from scratch, we can just rewrite the scientific form + // into fixed form in-place. This is safe to do because whenever + // %g resolves to %f, the fixed form will be no larger than the + // corresponding scientific form, and it will also contain the + // same significant digits as the scientific form. + fmt = chars_format::fixed; + if (scientific_exponent < 0) + { + // e.g. buffer_start == "-1.234e-04" + char* leading_digit = &buffer_start[sign]; + leading_digit[1] = leading_digit[0]; + // buffer_start == "-11234e-04" + buffer_start -= -scientific_exponent; + __glibcxx_assert(buffer_start >= buffer); + // buffer_start == "????-11234e-04" + char* head = buffer_start; + if (sign) + *head++ = '-'; + *head++ = '0'; + *head++ = '.'; + memset(head, '0', -scientific_exponent - 1); + // buffer_start == "-0.00011234e-04" + + // Now drop the exponent suffix, and add the leading zeros to + // the output length. + output_length -= strlen("e-0d"); + output_length += -scientific_exponent; + if (effective_precision - 1 == 0) + // The scientific form had no decimal point, but the fixed + // form now does. + output_length += strlen("."); + } + else if (effective_precision == 1) + { + // The scientific exponent must be 0, so the fixed form + // coincides with the scientific form (minus the exponent + // suffix). + __glibcxx_assert(scientific_exponent == 0); + output_length -= strlen("e+dd"); + } + else + { + // We are dealing with a scientific form which has a + // non-empty fractional part and a nonnegative exponent, + // e.g. buffer_start == "1.234e+02". + __glibcxx_assert(effective_precision >= 1); + char* const decimal_point = &buffer_start[sign + 1]; + __glibcxx_assert(*decimal_point == '.'); + memmove(decimal_point, decimal_point+1, + scientific_exponent); + // buffer_start == "123.4e+02" + decimal_point[scientific_exponent] = '.'; + if (scientific_exponent >= 100) + output_length -= strlen("e+ddd"); + else + output_length -= strlen("e+dd"); + if (effective_precision - 1 == scientific_exponent) + output_length -= strlen("."); + } + effective_precision -= 1 + scientific_exponent; + + __glibcxx_assert(output_length <= output_length_upper_bound); + } + else + { + // We're sticking to the scientific form, so keep the output as-is. + fmt = chars_format::scientific; + effective_precision = effective_precision - 1; + } + + // 7.21.6.1/8: "Finally ... any any trailing zeros are removed from + // the fractional portion of the result and the decimal-point + // character is removed if there is no fractional portion remaining." + if (effective_precision > 0) + { + char* decimal_point = nullptr; + if (fmt == chars_format::scientific) + decimal_point = &buffer_start[sign + 1]; + else if (fmt == chars_format::fixed) + decimal_point + = &buffer_start[output_length] - effective_precision - 1; + __glibcxx_assert(*decimal_point == '.'); + + char* const fractional_part_start = decimal_point + 1; + char* fractional_part_end = nullptr; + if (fmt == chars_format::scientific) + { + fractional_part_end = (buffer_start[output_length-5] == 'e' + ? &buffer_start[output_length-5] + : &buffer_start[output_length-4]); + __glibcxx_assert(*fractional_part_end == 'e'); + } + else if (fmt == chars_format::fixed) + fractional_part_end = &buffer_start[output_length]; + + const string_view fractional_part + = {fractional_part_start, (size_t)(fractional_part_end + - fractional_part_start) }; + const size_t last_nonzero_digit_pos + = fractional_part.find_last_not_of('0'); + + char* trim_start; + if (last_nonzero_digit_pos == string_view::npos) + trim_start = decimal_point; + else + trim_start = &fractional_part_start[last_nonzero_digit_pos] + 1; + if (fmt == chars_format::scientific) + memmove(trim_start, fractional_part_end, + &buffer_start[output_length] - fractional_part_end); + output_length -= fractional_part_end - trim_start; + } + + if (last - first < output_length) + return {last, errc::value_too_large}; + + memcpy(first, buffer_start, output_length); + return {first + output_length, errc{}}; + } + + __glibcxx_assert(false); + } + +// Define the overloads for float. +to_chars_result +to_chars(char* first, char* last, float value) noexcept +{ return __floating_to_chars_shortest(first, last, value, chars_format{}); } + +to_chars_result +to_chars(char* first, char* last, float value, chars_format fmt) noexcept +{ return __floating_to_chars_shortest(first, last, value, fmt); } + +to_chars_result +to_chars(char* first, char* last, float value, chars_format fmt, + int precision) noexcept +{ return __floating_to_chars_precision(first, last, value, fmt, precision); } + +// Define the overloads for double. +to_chars_result +to_chars(char* first, char* last, double value) noexcept +{ return __floating_to_chars_shortest(first, last, value, chars_format{}); } + +to_chars_result +to_chars(char* first, char* last, double value, chars_format fmt) noexcept +{ return __floating_to_chars_shortest(first, last, value, fmt); } + +to_chars_result +to_chars(char* first, char* last, double value, chars_format fmt, + int precision) noexcept +{ return __floating_to_chars_precision(first, last, value, fmt, precision); } + +// Define the overloads for long double. +to_chars_result +to_chars(char* first, char* last, long double value) noexcept +{ + if constexpr (LONG_DOUBLE_KIND == LDK_BINARY64 + || LONG_DOUBLE_KIND == LDK_UNSUPPORTED) + return __floating_to_chars_shortest(first, last, static_cast<double>(value), + chars_format{}); + else + return __floating_to_chars_shortest(first, last, value, chars_format{}); +} + +to_chars_result +to_chars(char* first, char* last, long double value, chars_format fmt) noexcept +{ + if constexpr (LONG_DOUBLE_KIND == LDK_BINARY64 + || LONG_DOUBLE_KIND == LDK_UNSUPPORTED) + return __floating_to_chars_shortest(first, last, static_cast<double>(value), + fmt); + else + return __floating_to_chars_shortest(first, last, value, fmt); +} + +to_chars_result +to_chars(char* first, char* last, long double value, chars_format fmt, + int precision) noexcept +{ + if constexpr (LONG_DOUBLE_KIND == LDK_BINARY64 + || LONG_DOUBLE_KIND == LDK_UNSUPPORTED) + return __floating_to_chars_precision(first, last, static_cast<double>(value), + fmt, + precision); + else + return __floating_to_chars_precision(first, last, value, fmt, precision); +} + +#ifdef _GLIBCXX_LONG_DOUBLE_COMPAT +// Map the -mlong-double-64 long double overloads to the double overloads. +extern "C" to_chars_result +_ZSt8to_charsPcS_e(char* first, char* last, double value) noexcept + __attribute__((alias ("_ZSt8to_charsPcS_d"))); + +extern "C" to_chars_result +_ZSt8to_charsPcS_eSt12chars_format(char* first, char* last, double value, + chars_format fmt) noexcept + __attribute__((alias ("_ZSt8to_charsPcS_dSt12chars_format"))); + +extern "C" to_chars_result +_ZSt8to_charsPcS_eSt12chars_formati(char* first, char* last, double value, + chars_format fmt, int precision) noexcept + __attribute__((alias ("_ZSt8to_charsPcS_dSt12chars_formati"))); +#endif + +_GLIBCXX_END_NAMESPACE_VERSION +} // namespace std diff --git a/libstdc++-v3/testsuite/20_util/to_chars/long_double.cc b/libstdc++-v3/testsuite/20_util/to_chars/long_double.cc new file mode 100644 index 0000000000000000000000000000000000000000..12ac8ae78225761729e6c2a44db1e75880dc33b1 --- /dev/null +++ b/libstdc++-v3/testsuite/20_util/to_chars/long_double.cc @@ -0,0 +1,199 @@ +// Copyright (C) 2020 Free Software Foundation, Inc. +// +// This file is part of the GNU ISO C++ Library. This library is free +// software; you can redistribute it and/or modify it under the +// terms of the GNU General Public License as published by the +// Free Software Foundation; either version 3, or (at your option) +// any later version. + +// This library is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU General Public License for more details. + +// You should have received a copy of the GNU General Public License along +// with this library; see the file COPYING3. If not see +// <http://www.gnu.org/licenses/>. + +// <charconv> is supported in C++14 as a GNU extension, but this test uses C++17 +// hexadecimal floating-point literals. +// { dg-do run { target c++17 } } +// { dg-xfail-run-if "Ryu needs __int128" { large_long_double && { ! int128 } } } + +#include <charconv> + +#include <cmath> +#include <cstring> +#include <iterator> +#include <limits> + +#include <testsuite_hooks.h> + +using namespace std; + +// The long double overloads of std::to_chars currently just go through printf +// (except for the hexadecimal formatting). + +// Test our hand-written hexadecimal formatting implementation. +void +test01() +{ + const long double hex_testcases[] + = { nextdownl(numeric_limits<long double>::max()), + nextupl(numeric_limits<long double>::min()), + 42.0L, + 0x1.2p+0L, + 0x1.23p+0L, + 0x1.234p+0L, + 0x1.2345p+0L, + 0x1.23456p+0L, + 0x1.234567p+0L, + 0x1.2345678p+0L, + 0x1.23456789p+0L, + 0x1.23456789p+0L, + 0x1.23456789ap+0L, + 0x1.23456789abp+0L, + 0x1.23456789abcp+0L, + 0x1.23456789abcdp+0L, + 0x1.23456789abcdep+0L, + 0x1.23456789abcdefp+0L, + 0x1.23456789abcdef0p+0L, + 0x1.23456789abcdef01p+0L, + 0x1.23456789abcdef012p+0L, + 0x1.23456789abcdef0123p+0L, + 0x1.23456789abcdef01234p+0L, + 0x1.23456789abcdef012345p+0L, + 0x1.23456789abcdef0123456p+0L, + 0x1.23456789abcdef01234567p+0L, + 0x1.23456789abcdef012345678p+0L, + 0x1.23456789abcdef0123456789p+0L, + 0x1.23456789abcdef0123456789ap+0L, + 0x1.23456789abcdef0123456789abp+0L, + 0x1.23456789abcdef0123456789abcp+0L, + 0x1.23456789abcdef0123456789abcdp+0L, + }; + + for (int exponent : {-11000, -3000, -300, -50, -7, 0, 7, 50, 300, 3000, 11000}) + for (long double testcase : hex_testcases) + { + testcase = ldexpl(testcase, exponent); + if (testcase == 0.0L || isinf(testcase)) + continue; + + char to_chars_buffer[1024], printf_buffer[1024]; + memset(to_chars_buffer, '\0', sizeof(to_chars_buffer)); + memset(printf_buffer, '\0', sizeof(printf_buffer)); + + auto result = to_chars(begin(to_chars_buffer), end(to_chars_buffer), + testcase, chars_format::hex); + VERIFY( result.ec == errc{} ); + *result.ptr = '\0'; + sprintf(printf_buffer, "%La", testcase); + VERIFY( !strcmp(to_chars_buffer, printf_buffer+strlen("0x")) ); + + { + // Verify that the nearby values have a different shortest form. + testcase = nextdownl(testcase); + result = to_chars(begin(to_chars_buffer), end(to_chars_buffer), + testcase, chars_format::hex); + VERIFY( result.ec == errc{} ); + *result.ptr = '\0'; + VERIFY( strcmp(to_chars_buffer, printf_buffer+strlen("0x")) != 0); + sprintf(printf_buffer, "%La", testcase); + VERIFY( !strcmp(to_chars_buffer, printf_buffer+strlen("0x")) ); + + testcase = nextupl(nextupl(testcase)); + result = to_chars(begin(to_chars_buffer), end(to_chars_buffer), + testcase, chars_format::hex); + VERIFY( result.ec == errc{} ); + *result.ptr = '\0'; + VERIFY( strcmp(to_chars_buffer, printf_buffer+strlen("0x")) != 0); + sprintf(printf_buffer, "%La", testcase); + VERIFY( !strcmp(to_chars_buffer, printf_buffer+strlen("0x")) ); + + testcase = nextdownl(testcase); + } + + for (int precision = -1; precision < 50; precision++) + { + result = to_chars(begin(to_chars_buffer), end(to_chars_buffer), + testcase, chars_format::hex, precision); + VERIFY( result.ec == errc{} ); + *result.ptr = '\0'; + sprintf(printf_buffer, "%.*La", precision, testcase); + VERIFY( !strcmp(to_chars_buffer, printf_buffer+strlen("0x")) ); + } + } +} + +// Test the rest of the formatting modes, which go through printf. +void +test02() +{ + const long double growth_factor = 1.442695040888963407359924681001892137L; + for (chars_format fmt : {chars_format::fixed, chars_format::scientific, + chars_format::general}) + for (long double __value = 1.0L, count = 0; !isinf(__value); + ++count <= 100.0L ? __value *= growth_factor : __value *= __value) + for (const long double value : {__value, 1.0L/__value}) + { + for (const int precision : {-1, 0, 10, 100, 10000}) + { + const char* const printf_specifier + = (fmt == chars_format::fixed ? "%.*Lf" + : fmt == chars_format::scientific ? "%.*Le" + : fmt == chars_format::general ? "%.*Lg" + : nullptr); + unsigned output_length = snprintf(nullptr, 0, printf_specifier, + precision, value); + + char printf_buffer[output_length+1]; + snprintf(printf_buffer, output_length+1, printf_specifier, + precision, value); + + char to_chars_buffer[output_length]; + auto result = to_chars(to_chars_buffer, + to_chars_buffer+output_length, + value, fmt, precision); + VERIFY( result.ec == errc{} ); + VERIFY( !memcmp(printf_buffer, to_chars_buffer, output_length) ); + + result = to_chars(to_chars_buffer, + to_chars_buffer+output_length-1, + value, fmt, precision); + VERIFY( result.ec == errc::value_too_large ); + } + + // Verify that the nearby values have a different shortest form. + char to_chars_buffer[50000]; + auto result = to_chars(begin(to_chars_buffer), end(to_chars_buffer), + value, fmt); + VERIFY( result.ec == errc{} ); + *result.ptr = '\0'; + char nearby_buffer[50000]; + { + const long double smaller = nextdownl(value); + result = to_chars(begin(nearby_buffer), end(nearby_buffer), + smaller, fmt); + VERIFY( result.ec == errc{} ); + *result.ptr = '\0'; + VERIFY( strcmp(to_chars_buffer, nearby_buffer) != 0 ); + } + + { + long double larger = nextupl(value); + result = to_chars(begin(nearby_buffer), end(nearby_buffer), + larger, fmt); + VERIFY( result.ec == errc{} ); + *result.ptr = '\0'; + VERIFY( strcmp(to_chars_buffer, nearby_buffer) != 0 ); + } + } +} + +int +main() +{ + test01(); + test02(); +}