diff --git a/gcc/testsuite/ChangeLog b/gcc/testsuite/ChangeLog
index 74a84a38e50a26165b04a77c7ac2ff1e702bbf7f..65dac88b2bd8d216436505a12c9e7083e92f53c8 100644
--- a/gcc/testsuite/ChangeLog
+++ b/gcc/testsuite/ChangeLog
@@ -1,3 +1,8 @@
+2016-11-15  Thomas Koenig  <tkoenig@gcc.gnu.org>
+
+	PR libgfortran/51119
+	* gfortran.dg/matmul_12.f90: New test case.
+
 2016-11-15  Uros Bizjak  <ubizjak@gmail.com>
 
 	* gcc.target/i386/funcspec-56.inc: New file.
diff --git a/gcc/testsuite/gfortran.dg/matmul_12.f90 b/gcc/testsuite/gfortran.dg/matmul_12.f90
new file mode 100644
index 0000000000000000000000000000000000000000..5badd3f0b11f18a5c85b91b11de370b30910b843
--- /dev/null
+++ b/gcc/testsuite/gfortran.dg/matmul_12.f90
@@ -0,0 +1,22 @@
+! { dg-do run }
+program main
+  integer, parameter :: sz=5, su=3
+  integer, parameter :: l=2
+  integer, parameter :: u=l-1+su
+  integer(kind=4), dimension(sz,sz) :: r,a,b
+  integer :: i,j
+  do i=1,4
+     do j=1,4
+        a(i,j) = i*10+j
+        b(i,j) = 100+i*10+j
+     end do
+  end do
+  r = -1
+  b(l:u,l:u) = reshape([(i,i=1,su*su)],[su,su]);
+  a(l:u,l:u) = reshape([(i,i=1,su*su)],[su,su]);
+
+  r(1:su,1:su) = matmul(a(l:u,l:u),b(l:u,l:u))
+  if (any(reshape(r,[sz*sz]) /= [30, 36, 42, -1, -1, 66, 81, 96, -1, -1,&
+       & 102, 126, 150, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1])) &
+       call abort
+end program main
diff --git a/libgfortran/ChangeLog b/libgfortran/ChangeLog
index da3b3e0878fa9f7725ade5ce05cef3a607f39833..50305af70a881d9667d74b0ed676c07206cfc5ef 100644
--- a/libgfortran/ChangeLog
+++ b/libgfortran/ChangeLog
@@ -1,3 +1,25 @@
+2016-11-15  Jerry DeLisle  <jvdelisle@gcc.gnu.org>
+	    Thomas Koenig  <tkoenig@gcc.gnu.org>
+
+	PR libgfortran/51119
+	* Makefile.am: Add new optimization flags matmul.
+	* Makefile.in: Regenerate.
+	* m4/matmul.m4: For the case of all strides = 1, implement a
+	fast blocked matrix multiply. Fix some whitespace.
+	* generated/matmul_c10.c: Regenerate.
+	* generated/matmul_c16.c: Regenerate.
+	* generated/matmul_c4.c: Regenerate.
+	* generated/matmul_c8.c: Regenerate.
+	* generated/matmul_i1.c: Regenerate.
+	* generated/matmul_i16.c: Regenerate.
+	* generated/matmul_i2.c: Regenerate.
+	* generated/matmul_i4.c: Regenerate.
+	* generated/matmul_i8.c: Regenerate.
+	* generated/matmul_r10.c: Regenerate.
+	* generated/matmul_r16.c: Regenerate.
+	* generated/matmul_r4.c: Regenerate.
+	* generated/matmul_r8.c: Regenerate.
+
 2016-11-15  Matthias Klose  <doko@ubuntu.com>
 
 	* configure: Regenerate.
diff --git a/libgfortran/Makefile.am b/libgfortran/Makefile.am
index 39d3e11d223ca9885b5d433fc50c44e6c453de16..7f4002dcad48ba0d5a30a02725e38173d4840e62 100644
--- a/libgfortran/Makefile.am
+++ b/libgfortran/Makefile.am
@@ -850,7 +850,7 @@ intrinsics/dprod_r8.f90 \
 intrinsics/f2c_specifics.F90
 
 # Turn on vectorization and loop unrolling for matmul.
-$(patsubst %.c,%.lo,$(notdir $(i_matmul_c))): AM_CFLAGS += -ftree-vectorize -funroll-loops
+$(patsubst %.c,%.lo,$(notdir $(i_matmul_c))): AM_CFLAGS += -ffast-math -fno-protect-parens -fstack-arrays -ftree-vectorize -funroll-loops --param max-unroll-times=4 
 # Logical matmul doesn't vectorize.
 $(patsubst %.c,%.lo,$(notdir $(i_matmull_c))): AM_CFLAGS += -funroll-loops
 
diff --git a/libgfortran/Makefile.in b/libgfortran/Makefile.in
index 7ed080cf7b0d4c006263a90596187b07a1d48a03..c1a37d78c40bb47abb8a45c459b20b82ac77d40f 100644
--- a/libgfortran/Makefile.in
+++ b/libgfortran/Makefile.in
@@ -5956,7 +5956,7 @@ uninstall-am: uninstall-cafexeclibLTLIBRARIES \
 @LIBGFOR_USE_SYMVER_SUN_TRUE@@LIBGFOR_USE_SYMVER_TRUE@	 > $@ || (rm -f $@ ; exit 1)
 
 # Turn on vectorization and loop unrolling for matmul.
-$(patsubst %.c,%.lo,$(notdir $(i_matmul_c))): AM_CFLAGS += -ftree-vectorize -funroll-loops
+$(patsubst %.c,%.lo,$(notdir $(i_matmul_c))): AM_CFLAGS += -ffast-math -fno-protect-parens -fstack-arrays -ftree-vectorize -funroll-loops --param max-unroll-times=4 
 # Logical matmul doesn't vectorize.
 $(patsubst %.c,%.lo,$(notdir $(i_matmull_c))): AM_CFLAGS += -funroll-loops
 
diff --git a/libgfortran/generated/matmul_c10.c b/libgfortran/generated/matmul_c10.c
index c95581849886384eff4fe00e41501580898854c8..c784a2630cdfb49478fcf15e87ca012ec12ca328 100644
--- a/libgfortran/generated/matmul_c10.c
+++ b/libgfortran/generated/matmul_c10.c
@@ -32,7 +32,7 @@ see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
 #if defined (HAVE_GFC_COMPLEX_10)
 
 /* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
-   passed to us by the front-end, in which case we'll call it for large
+   passed to us by the front-end, in which case we call it for large
    matrices.  */
 
 typedef void (*blas_call)(const char *, const char *, const int *, const int *,
@@ -99,7 +99,7 @@ matmul_c10 (gfc_array_c10 * const restrict retarray,
 
    o One-dimensional argument B is implicitly treated as a column matrix
      dimensioned [count, 1], so ycount=1.
-  */
+*/
 
   if (retarray->base_addr == NULL)
     {
@@ -127,47 +127,47 @@ matmul_c10 (gfc_array_c10 * const restrict retarray,
 	= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_COMPLEX_10));
       retarray->offset = 0;
     }
-    else if (unlikely (compile_options.bounds_check))
-      {
-	index_type ret_extent, arg_extent;
-
-	if (GFC_DESCRIPTOR_RANK (a) == 1)
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic: is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-	  }
-	else if (GFC_DESCRIPTOR_RANK (b) == 1)
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic: is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);	    
-	  }
-	else
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic for dimension 1:"
-			     " is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic for dimension 2:"
-			     " is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-	  }
-      }
+  else if (unlikely (compile_options.bounds_check))
+    {
+      index_type ret_extent, arg_extent;
+
+      if (GFC_DESCRIPTOR_RANK (a) == 1)
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic: is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+      else if (GFC_DESCRIPTOR_RANK (b) == 1)
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic: is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+      else
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic for dimension 1:"
+			   " is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic for dimension 2:"
+			   " is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+    }
 
 
   if (GFC_DESCRIPTOR_RANK (retarray) == 1)
@@ -230,61 +230,294 @@ matmul_c10 (gfc_array_c10 * const restrict retarray,
   bbase = b->base_addr;
   dest = retarray->base_addr;
 
-
-  /* Now that everything is set up, we're performing the multiplication
+  /* Now that everything is set up, we perform the multiplication
      itself.  */
 
 #define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
 
   if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
       && (bxstride == 1 || bystride == 1)
       && (((float) xcount) * ((float) ycount) * ((float) count)
           > POW3(blas_limit)))
-  {
-    const int m = xcount, n = ycount, k = count, ldc = rystride;
-    const GFC_COMPLEX_10 one = 1, zero = 0;
-    const int lda = (axstride == 1) ? aystride : axstride,
-              ldb = (bxstride == 1) ? bystride : bxstride;
-
-    if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
-      {
-        assert (gemm != NULL);
-        gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k,
-              &one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1);
-        return;
-      }
-  }
-
-  if (rxstride == 1 && axstride == 1 && bxstride == 1)
     {
-      const GFC_COMPLEX_10 * restrict bbase_y;
-      GFC_COMPLEX_10 * restrict dest_y;
-      const GFC_COMPLEX_10 * restrict abase_n;
-      GFC_COMPLEX_10 bbase_yn;
+      const int m = xcount, n = ycount, k = count, ldc = rystride;
+      const GFC_COMPLEX_10 one = 1, zero = 0;
+      const int lda = (axstride == 1) ? aystride : axstride,
+		ldb = (bxstride == 1) ? bystride : bxstride;
 
-      if (rystride == xcount)
-	memset (dest, 0, (sizeof (GFC_COMPLEX_10) * xcount * ycount));
-      else
+      if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
 	{
-	  for (y = 0; y < ycount; y++)
-	    for (x = 0; x < xcount; x++)
-	      dest[x + y*rystride] = (GFC_COMPLEX_10)0;
+	  assert (gemm != NULL);
+	  gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+		&n, &k,	&one, abase, &lda, bbase, &ldb, &zero, dest,
+		&ldc, 1, 1);
+	  return;
 	}
+    }
 
-      for (y = 0; y < ycount; y++)
+  if (rxstride == 1 && axstride == 1 && bxstride == 1)
+    {
+      /* This block of code implements a tuned matmul, derived from
+         Superscalar GEMM-based level 3 BLAS,  Beta version 0.1
+
+               Bo Kagstrom and Per Ling
+               Department of Computing Science
+               Umea University
+               S-901 87 Umea, Sweden
+
+	 from netlib.org, translated to C, and modified for matmul.m4.  */
+
+      const GFC_COMPLEX_10 *a, *b;
+      GFC_COMPLEX_10 *c;
+      const index_type m = xcount, n = ycount, k = count;
+
+      /* System generated locals */
+      index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+		 i1, i2, i3, i4, i5, i6;
+
+      /* Local variables */
+      GFC_COMPLEX_10 t1[65536], /* was [256][256] */
+		 f11, f12, f21, f22, f31, f32, f41, f42,
+		 f13, f14, f23, f24, f33, f34, f43, f44;
+      index_type i, j, l, ii, jj, ll;
+      index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+      a = abase;
+      b = bbase;
+      c = retarray->base_addr;
+
+      /* Parameter adjustments */
+      c_dim1 = rystride;
+      c_offset = 1 + c_dim1;
+      c -= c_offset;
+      a_dim1 = aystride;
+      a_offset = 1 + a_dim1;
+      a -= a_offset;
+      b_dim1 = bystride;
+      b_offset = 1 + b_dim1;
+      b -= b_offset;
+
+      /* Early exit if possible */
+      if (m == 0 || n == 0 || k == 0)
+	return;
+
+      /* Empty c first.  */
+      for (j=1; j<=n; j++)
+	for (i=1; i<=m; i++)
+	  c[i + j * c_dim1] = (GFC_COMPLEX_10)0;
+
+      /* Start turning the crank. */
+      i1 = n;
+      for (jj = 1; jj <= i1; jj += 512)
 	{
-	  bbase_y = bbase + y*bystride;
-	  dest_y = dest + y*rystride;
-	  for (n = 0; n < count; n++)
+	  /* Computing MIN */
+	  i2 = 512;
+	  i3 = n - jj + 1;
+	  jsec = min(i2,i3);
+	  ujsec = jsec - jsec % 4;
+	  i2 = k;
+	  for (ll = 1; ll <= i2; ll += 256)
 	    {
-	      abase_n = abase + n*aystride;
-	      bbase_yn = bbase_y[n];
-	      for (x = 0; x < xcount; x++)
+	      /* Computing MIN */
+	      i3 = 256;
+	      i4 = k - ll + 1;
+	      lsec = min(i3,i4);
+	      ulsec = lsec - lsec % 2;
+
+	      i3 = m;
+	      for (ii = 1; ii <= i3; ii += 256)
 		{
-		  dest_y[x] += abase_n[x] * bbase_yn;
+		  /* Computing MIN */
+		  i4 = 256;
+		  i5 = m - ii + 1;
+		  isec = min(i4,i5);
+		  uisec = isec - isec % 2;
+		  i4 = ll + ulsec - 1;
+		  for (l = ll; l <= i4; l += 2)
+		    {
+		      i5 = ii + uisec - 1;
+		      for (i = ii; i <= i5; i += 2)
+			{
+			  t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+					a[i + l * a_dim1];
+			  t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+					a[i + (l + 1) * a_dim1];
+			  t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+					a[i + 1 + l * a_dim1];
+			  t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+					a[i + 1 + (l + 1) * a_dim1];
+			}
+		      if (uisec < isec)
+			{
+			  t1[l - ll + 1 + (isec << 8) - 257] =
+				    a[ii + isec - 1 + l * a_dim1];
+			  t1[l - ll + 2 + (isec << 8) - 257] =
+				    a[ii + isec - 1 + (l + 1) * a_dim1];
+			}
+		    }
+		  if (ulsec < lsec)
+		    {
+		      i4 = ii + isec - 1;
+		      for (i = ii; i<= i4; ++i)
+			{
+			  t1[lsec + ((i - ii + 1) << 8) - 257] =
+				    a[i + (ll + lsec - 1) * a_dim1];
+			}
+		    }
+
+		  uisec = isec - isec % 4;
+		  i4 = jj + ujsec - 1;
+		  for (j = jj; j <= i4; j += 4)
+		    {
+		      i5 = ii + uisec - 1;
+		      for (i = ii; i <= i5; i += 4)
+			{
+			  f11 = c[i + j * c_dim1];
+			  f21 = c[i + 1 + j * c_dim1];
+			  f12 = c[i + (j + 1) * c_dim1];
+			  f22 = c[i + 1 + (j + 1) * c_dim1];
+			  f13 = c[i + (j + 2) * c_dim1];
+			  f23 = c[i + 1 + (j + 2) * c_dim1];
+			  f14 = c[i + (j + 3) * c_dim1];
+			  f24 = c[i + 1 + (j + 3) * c_dim1];
+			  f31 = c[i + 2 + j * c_dim1];
+			  f41 = c[i + 3 + j * c_dim1];
+			  f32 = c[i + 2 + (j + 1) * c_dim1];
+			  f42 = c[i + 3 + (j + 1) * c_dim1];
+			  f33 = c[i + 2 + (j + 2) * c_dim1];
+			  f43 = c[i + 3 + (j + 2) * c_dim1];
+			  f34 = c[i + 2 + (j + 3) * c_dim1];
+			  f44 = c[i + 3 + (j + 3) * c_dim1];
+			  i6 = ll + lsec - 1;
+			  for (l = ll; l <= i6; ++l)
+			    {
+			      f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			    }
+			  c[i + j * c_dim1] = f11;
+			  c[i + 1 + j * c_dim1] = f21;
+			  c[i + (j + 1) * c_dim1] = f12;
+			  c[i + 1 + (j + 1) * c_dim1] = f22;
+			  c[i + (j + 2) * c_dim1] = f13;
+			  c[i + 1 + (j + 2) * c_dim1] = f23;
+			  c[i + (j + 3) * c_dim1] = f14;
+			  c[i + 1 + (j + 3) * c_dim1] = f24;
+			  c[i + 2 + j * c_dim1] = f31;
+			  c[i + 3 + j * c_dim1] = f41;
+			  c[i + 2 + (j + 1) * c_dim1] = f32;
+			  c[i + 3 + (j + 1) * c_dim1] = f42;
+			  c[i + 2 + (j + 2) * c_dim1] = f33;
+			  c[i + 3 + (j + 2) * c_dim1] = f43;
+			  c[i + 2 + (j + 3) * c_dim1] = f34;
+			  c[i + 3 + (j + 3) * c_dim1] = f44;
+			}
+		      if (uisec < isec)
+			{
+			  i5 = ii + isec - 1;
+			  for (i = ii + uisec; i <= i5; ++i)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      f12 = c[i + (j + 1) * c_dim1];
+			      f13 = c[i + (j + 2) * c_dim1];
+			      f14 = c[i + (j + 3) * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 1) * b_dim1];
+				  f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 2) * b_dim1];
+				  f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 3) * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			      c[i + (j + 1) * c_dim1] = f12;
+			      c[i + (j + 2) * c_dim1] = f13;
+			      c[i + (j + 3) * c_dim1] = f14;
+			    }
+			}
+		    }
+		  if (ujsec < jsec)
+		    {
+		      i4 = jj + jsec - 1;
+		      for (j = jj + ujsec; j <= i4; ++j)
+			{
+			  i5 = ii + uisec - 1;
+			  for (i = ii; i <= i5; i += 4)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      f21 = c[i + 1 + j * c_dim1];
+			      f31 = c[i + 2 + j * c_dim1];
+			      f41 = c[i + 3 + j * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+					  257] * b[l + j * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			      c[i + 1 + j * c_dim1] = f21;
+			      c[i + 2 + j * c_dim1] = f31;
+			      c[i + 3 + j * c_dim1] = f41;
+			    }
+			  i5 = ii + isec - 1;
+			  for (i = ii + uisec; i <= i5; ++i)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			    }
+			}
+		    }
 		}
 	    }
 	}
+      return;
     }
   else if (rxstride == 1 && aystride == 1 && bxstride == 1)
     {
@@ -334,7 +567,9 @@ matmul_c10 (gfc_array_c10 * const restrict retarray,
 	for (n = 0; n < count; n++)
 	  for (x = 0; x < xcount; x++)
 	    /* dest[x,y] += a[x,n] * b[n,y] */
-	    dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
+	    dest[x*rxstride + y*rystride] +=
+					abase[x*axstride + n*aystride] *
+					bbase[n*bxstride + y*bystride];
     }
   else if (GFC_DESCRIPTOR_RANK (a) == 1)
     {
@@ -372,5 +607,4 @@ matmul_c10 (gfc_array_c10 * const restrict retarray,
 	}
     }
 }
-
 #endif
diff --git a/libgfortran/generated/matmul_c16.c b/libgfortran/generated/matmul_c16.c
index 25fe56e767472bc093011bae2d39cf8f158a25df..47e1bea729b5353c5f06db0caa2727990f8b8a40 100644
--- a/libgfortran/generated/matmul_c16.c
+++ b/libgfortran/generated/matmul_c16.c
@@ -32,7 +32,7 @@ see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
 #if defined (HAVE_GFC_COMPLEX_16)
 
 /* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
-   passed to us by the front-end, in which case we'll call it for large
+   passed to us by the front-end, in which case we call it for large
    matrices.  */
 
 typedef void (*blas_call)(const char *, const char *, const int *, const int *,
@@ -99,7 +99,7 @@ matmul_c16 (gfc_array_c16 * const restrict retarray,
 
    o One-dimensional argument B is implicitly treated as a column matrix
      dimensioned [count, 1], so ycount=1.
-  */
+*/
 
   if (retarray->base_addr == NULL)
     {
@@ -127,47 +127,47 @@ matmul_c16 (gfc_array_c16 * const restrict retarray,
 	= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_COMPLEX_16));
       retarray->offset = 0;
     }
-    else if (unlikely (compile_options.bounds_check))
-      {
-	index_type ret_extent, arg_extent;
-
-	if (GFC_DESCRIPTOR_RANK (a) == 1)
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic: is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-	  }
-	else if (GFC_DESCRIPTOR_RANK (b) == 1)
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic: is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);	    
-	  }
-	else
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic for dimension 1:"
-			     " is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic for dimension 2:"
-			     " is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-	  }
-      }
+  else if (unlikely (compile_options.bounds_check))
+    {
+      index_type ret_extent, arg_extent;
+
+      if (GFC_DESCRIPTOR_RANK (a) == 1)
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic: is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+      else if (GFC_DESCRIPTOR_RANK (b) == 1)
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic: is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+      else
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic for dimension 1:"
+			   " is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic for dimension 2:"
+			   " is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+    }
 
 
   if (GFC_DESCRIPTOR_RANK (retarray) == 1)
@@ -230,61 +230,294 @@ matmul_c16 (gfc_array_c16 * const restrict retarray,
   bbase = b->base_addr;
   dest = retarray->base_addr;
 
-
-  /* Now that everything is set up, we're performing the multiplication
+  /* Now that everything is set up, we perform the multiplication
      itself.  */
 
 #define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
 
   if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
       && (bxstride == 1 || bystride == 1)
       && (((float) xcount) * ((float) ycount) * ((float) count)
           > POW3(blas_limit)))
-  {
-    const int m = xcount, n = ycount, k = count, ldc = rystride;
-    const GFC_COMPLEX_16 one = 1, zero = 0;
-    const int lda = (axstride == 1) ? aystride : axstride,
-              ldb = (bxstride == 1) ? bystride : bxstride;
-
-    if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
-      {
-        assert (gemm != NULL);
-        gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k,
-              &one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1);
-        return;
-      }
-  }
-
-  if (rxstride == 1 && axstride == 1 && bxstride == 1)
     {
-      const GFC_COMPLEX_16 * restrict bbase_y;
-      GFC_COMPLEX_16 * restrict dest_y;
-      const GFC_COMPLEX_16 * restrict abase_n;
-      GFC_COMPLEX_16 bbase_yn;
+      const int m = xcount, n = ycount, k = count, ldc = rystride;
+      const GFC_COMPLEX_16 one = 1, zero = 0;
+      const int lda = (axstride == 1) ? aystride : axstride,
+		ldb = (bxstride == 1) ? bystride : bxstride;
 
-      if (rystride == xcount)
-	memset (dest, 0, (sizeof (GFC_COMPLEX_16) * xcount * ycount));
-      else
+      if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
 	{
-	  for (y = 0; y < ycount; y++)
-	    for (x = 0; x < xcount; x++)
-	      dest[x + y*rystride] = (GFC_COMPLEX_16)0;
+	  assert (gemm != NULL);
+	  gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+		&n, &k,	&one, abase, &lda, bbase, &ldb, &zero, dest,
+		&ldc, 1, 1);
+	  return;
 	}
+    }
 
-      for (y = 0; y < ycount; y++)
+  if (rxstride == 1 && axstride == 1 && bxstride == 1)
+    {
+      /* This block of code implements a tuned matmul, derived from
+         Superscalar GEMM-based level 3 BLAS,  Beta version 0.1
+
+               Bo Kagstrom and Per Ling
+               Department of Computing Science
+               Umea University
+               S-901 87 Umea, Sweden
+
+	 from netlib.org, translated to C, and modified for matmul.m4.  */
+
+      const GFC_COMPLEX_16 *a, *b;
+      GFC_COMPLEX_16 *c;
+      const index_type m = xcount, n = ycount, k = count;
+
+      /* System generated locals */
+      index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+		 i1, i2, i3, i4, i5, i6;
+
+      /* Local variables */
+      GFC_COMPLEX_16 t1[65536], /* was [256][256] */
+		 f11, f12, f21, f22, f31, f32, f41, f42,
+		 f13, f14, f23, f24, f33, f34, f43, f44;
+      index_type i, j, l, ii, jj, ll;
+      index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+      a = abase;
+      b = bbase;
+      c = retarray->base_addr;
+
+      /* Parameter adjustments */
+      c_dim1 = rystride;
+      c_offset = 1 + c_dim1;
+      c -= c_offset;
+      a_dim1 = aystride;
+      a_offset = 1 + a_dim1;
+      a -= a_offset;
+      b_dim1 = bystride;
+      b_offset = 1 + b_dim1;
+      b -= b_offset;
+
+      /* Early exit if possible */
+      if (m == 0 || n == 0 || k == 0)
+	return;
+
+      /* Empty c first.  */
+      for (j=1; j<=n; j++)
+	for (i=1; i<=m; i++)
+	  c[i + j * c_dim1] = (GFC_COMPLEX_16)0;
+
+      /* Start turning the crank. */
+      i1 = n;
+      for (jj = 1; jj <= i1; jj += 512)
 	{
-	  bbase_y = bbase + y*bystride;
-	  dest_y = dest + y*rystride;
-	  for (n = 0; n < count; n++)
+	  /* Computing MIN */
+	  i2 = 512;
+	  i3 = n - jj + 1;
+	  jsec = min(i2,i3);
+	  ujsec = jsec - jsec % 4;
+	  i2 = k;
+	  for (ll = 1; ll <= i2; ll += 256)
 	    {
-	      abase_n = abase + n*aystride;
-	      bbase_yn = bbase_y[n];
-	      for (x = 0; x < xcount; x++)
+	      /* Computing MIN */
+	      i3 = 256;
+	      i4 = k - ll + 1;
+	      lsec = min(i3,i4);
+	      ulsec = lsec - lsec % 2;
+
+	      i3 = m;
+	      for (ii = 1; ii <= i3; ii += 256)
 		{
-		  dest_y[x] += abase_n[x] * bbase_yn;
+		  /* Computing MIN */
+		  i4 = 256;
+		  i5 = m - ii + 1;
+		  isec = min(i4,i5);
+		  uisec = isec - isec % 2;
+		  i4 = ll + ulsec - 1;
+		  for (l = ll; l <= i4; l += 2)
+		    {
+		      i5 = ii + uisec - 1;
+		      for (i = ii; i <= i5; i += 2)
+			{
+			  t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+					a[i + l * a_dim1];
+			  t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+					a[i + (l + 1) * a_dim1];
+			  t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+					a[i + 1 + l * a_dim1];
+			  t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+					a[i + 1 + (l + 1) * a_dim1];
+			}
+		      if (uisec < isec)
+			{
+			  t1[l - ll + 1 + (isec << 8) - 257] =
+				    a[ii + isec - 1 + l * a_dim1];
+			  t1[l - ll + 2 + (isec << 8) - 257] =
+				    a[ii + isec - 1 + (l + 1) * a_dim1];
+			}
+		    }
+		  if (ulsec < lsec)
+		    {
+		      i4 = ii + isec - 1;
+		      for (i = ii; i<= i4; ++i)
+			{
+			  t1[lsec + ((i - ii + 1) << 8) - 257] =
+				    a[i + (ll + lsec - 1) * a_dim1];
+			}
+		    }
+
+		  uisec = isec - isec % 4;
+		  i4 = jj + ujsec - 1;
+		  for (j = jj; j <= i4; j += 4)
+		    {
+		      i5 = ii + uisec - 1;
+		      for (i = ii; i <= i5; i += 4)
+			{
+			  f11 = c[i + j * c_dim1];
+			  f21 = c[i + 1 + j * c_dim1];
+			  f12 = c[i + (j + 1) * c_dim1];
+			  f22 = c[i + 1 + (j + 1) * c_dim1];
+			  f13 = c[i + (j + 2) * c_dim1];
+			  f23 = c[i + 1 + (j + 2) * c_dim1];
+			  f14 = c[i + (j + 3) * c_dim1];
+			  f24 = c[i + 1 + (j + 3) * c_dim1];
+			  f31 = c[i + 2 + j * c_dim1];
+			  f41 = c[i + 3 + j * c_dim1];
+			  f32 = c[i + 2 + (j + 1) * c_dim1];
+			  f42 = c[i + 3 + (j + 1) * c_dim1];
+			  f33 = c[i + 2 + (j + 2) * c_dim1];
+			  f43 = c[i + 3 + (j + 2) * c_dim1];
+			  f34 = c[i + 2 + (j + 3) * c_dim1];
+			  f44 = c[i + 3 + (j + 3) * c_dim1];
+			  i6 = ll + lsec - 1;
+			  for (l = ll; l <= i6; ++l)
+			    {
+			      f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			    }
+			  c[i + j * c_dim1] = f11;
+			  c[i + 1 + j * c_dim1] = f21;
+			  c[i + (j + 1) * c_dim1] = f12;
+			  c[i + 1 + (j + 1) * c_dim1] = f22;
+			  c[i + (j + 2) * c_dim1] = f13;
+			  c[i + 1 + (j + 2) * c_dim1] = f23;
+			  c[i + (j + 3) * c_dim1] = f14;
+			  c[i + 1 + (j + 3) * c_dim1] = f24;
+			  c[i + 2 + j * c_dim1] = f31;
+			  c[i + 3 + j * c_dim1] = f41;
+			  c[i + 2 + (j + 1) * c_dim1] = f32;
+			  c[i + 3 + (j + 1) * c_dim1] = f42;
+			  c[i + 2 + (j + 2) * c_dim1] = f33;
+			  c[i + 3 + (j + 2) * c_dim1] = f43;
+			  c[i + 2 + (j + 3) * c_dim1] = f34;
+			  c[i + 3 + (j + 3) * c_dim1] = f44;
+			}
+		      if (uisec < isec)
+			{
+			  i5 = ii + isec - 1;
+			  for (i = ii + uisec; i <= i5; ++i)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      f12 = c[i + (j + 1) * c_dim1];
+			      f13 = c[i + (j + 2) * c_dim1];
+			      f14 = c[i + (j + 3) * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 1) * b_dim1];
+				  f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 2) * b_dim1];
+				  f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 3) * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			      c[i + (j + 1) * c_dim1] = f12;
+			      c[i + (j + 2) * c_dim1] = f13;
+			      c[i + (j + 3) * c_dim1] = f14;
+			    }
+			}
+		    }
+		  if (ujsec < jsec)
+		    {
+		      i4 = jj + jsec - 1;
+		      for (j = jj + ujsec; j <= i4; ++j)
+			{
+			  i5 = ii + uisec - 1;
+			  for (i = ii; i <= i5; i += 4)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      f21 = c[i + 1 + j * c_dim1];
+			      f31 = c[i + 2 + j * c_dim1];
+			      f41 = c[i + 3 + j * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+					  257] * b[l + j * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			      c[i + 1 + j * c_dim1] = f21;
+			      c[i + 2 + j * c_dim1] = f31;
+			      c[i + 3 + j * c_dim1] = f41;
+			    }
+			  i5 = ii + isec - 1;
+			  for (i = ii + uisec; i <= i5; ++i)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			    }
+			}
+		    }
 		}
 	    }
 	}
+      return;
     }
   else if (rxstride == 1 && aystride == 1 && bxstride == 1)
     {
@@ -334,7 +567,9 @@ matmul_c16 (gfc_array_c16 * const restrict retarray,
 	for (n = 0; n < count; n++)
 	  for (x = 0; x < xcount; x++)
 	    /* dest[x,y] += a[x,n] * b[n,y] */
-	    dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
+	    dest[x*rxstride + y*rystride] +=
+					abase[x*axstride + n*aystride] *
+					bbase[n*bxstride + y*bystride];
     }
   else if (GFC_DESCRIPTOR_RANK (a) == 1)
     {
@@ -372,5 +607,4 @@ matmul_c16 (gfc_array_c16 * const restrict retarray,
 	}
     }
 }
-
 #endif
diff --git a/libgfortran/generated/matmul_c4.c b/libgfortran/generated/matmul_c4.c
index e9d2ed33d5c4a8742ef556181d8ba9dda8267eef..4eb18965d91ab4a523e944a0847a7b1e2c4862af 100644
--- a/libgfortran/generated/matmul_c4.c
+++ b/libgfortran/generated/matmul_c4.c
@@ -32,7 +32,7 @@ see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
 #if defined (HAVE_GFC_COMPLEX_4)
 
 /* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
-   passed to us by the front-end, in which case we'll call it for large
+   passed to us by the front-end, in which case we call it for large
    matrices.  */
 
 typedef void (*blas_call)(const char *, const char *, const int *, const int *,
@@ -99,7 +99,7 @@ matmul_c4 (gfc_array_c4 * const restrict retarray,
 
    o One-dimensional argument B is implicitly treated as a column matrix
      dimensioned [count, 1], so ycount=1.
-  */
+*/
 
   if (retarray->base_addr == NULL)
     {
@@ -127,47 +127,47 @@ matmul_c4 (gfc_array_c4 * const restrict retarray,
 	= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_COMPLEX_4));
       retarray->offset = 0;
     }
-    else if (unlikely (compile_options.bounds_check))
-      {
-	index_type ret_extent, arg_extent;
-
-	if (GFC_DESCRIPTOR_RANK (a) == 1)
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic: is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-	  }
-	else if (GFC_DESCRIPTOR_RANK (b) == 1)
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic: is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);	    
-	  }
-	else
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic for dimension 1:"
-			     " is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic for dimension 2:"
-			     " is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-	  }
-      }
+  else if (unlikely (compile_options.bounds_check))
+    {
+      index_type ret_extent, arg_extent;
+
+      if (GFC_DESCRIPTOR_RANK (a) == 1)
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic: is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+      else if (GFC_DESCRIPTOR_RANK (b) == 1)
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic: is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+      else
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic for dimension 1:"
+			   " is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic for dimension 2:"
+			   " is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+    }
 
 
   if (GFC_DESCRIPTOR_RANK (retarray) == 1)
@@ -230,61 +230,294 @@ matmul_c4 (gfc_array_c4 * const restrict retarray,
   bbase = b->base_addr;
   dest = retarray->base_addr;
 
-
-  /* Now that everything is set up, we're performing the multiplication
+  /* Now that everything is set up, we perform the multiplication
      itself.  */
 
 #define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
 
   if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
       && (bxstride == 1 || bystride == 1)
       && (((float) xcount) * ((float) ycount) * ((float) count)
           > POW3(blas_limit)))
-  {
-    const int m = xcount, n = ycount, k = count, ldc = rystride;
-    const GFC_COMPLEX_4 one = 1, zero = 0;
-    const int lda = (axstride == 1) ? aystride : axstride,
-              ldb = (bxstride == 1) ? bystride : bxstride;
-
-    if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
-      {
-        assert (gemm != NULL);
-        gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k,
-              &one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1);
-        return;
-      }
-  }
-
-  if (rxstride == 1 && axstride == 1 && bxstride == 1)
     {
-      const GFC_COMPLEX_4 * restrict bbase_y;
-      GFC_COMPLEX_4 * restrict dest_y;
-      const GFC_COMPLEX_4 * restrict abase_n;
-      GFC_COMPLEX_4 bbase_yn;
+      const int m = xcount, n = ycount, k = count, ldc = rystride;
+      const GFC_COMPLEX_4 one = 1, zero = 0;
+      const int lda = (axstride == 1) ? aystride : axstride,
+		ldb = (bxstride == 1) ? bystride : bxstride;
 
-      if (rystride == xcount)
-	memset (dest, 0, (sizeof (GFC_COMPLEX_4) * xcount * ycount));
-      else
+      if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
 	{
-	  for (y = 0; y < ycount; y++)
-	    for (x = 0; x < xcount; x++)
-	      dest[x + y*rystride] = (GFC_COMPLEX_4)0;
+	  assert (gemm != NULL);
+	  gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+		&n, &k,	&one, abase, &lda, bbase, &ldb, &zero, dest,
+		&ldc, 1, 1);
+	  return;
 	}
+    }
 
-      for (y = 0; y < ycount; y++)
+  if (rxstride == 1 && axstride == 1 && bxstride == 1)
+    {
+      /* This block of code implements a tuned matmul, derived from
+         Superscalar GEMM-based level 3 BLAS,  Beta version 0.1
+
+               Bo Kagstrom and Per Ling
+               Department of Computing Science
+               Umea University
+               S-901 87 Umea, Sweden
+
+	 from netlib.org, translated to C, and modified for matmul.m4.  */
+
+      const GFC_COMPLEX_4 *a, *b;
+      GFC_COMPLEX_4 *c;
+      const index_type m = xcount, n = ycount, k = count;
+
+      /* System generated locals */
+      index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+		 i1, i2, i3, i4, i5, i6;
+
+      /* Local variables */
+      GFC_COMPLEX_4 t1[65536], /* was [256][256] */
+		 f11, f12, f21, f22, f31, f32, f41, f42,
+		 f13, f14, f23, f24, f33, f34, f43, f44;
+      index_type i, j, l, ii, jj, ll;
+      index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+      a = abase;
+      b = bbase;
+      c = retarray->base_addr;
+
+      /* Parameter adjustments */
+      c_dim1 = rystride;
+      c_offset = 1 + c_dim1;
+      c -= c_offset;
+      a_dim1 = aystride;
+      a_offset = 1 + a_dim1;
+      a -= a_offset;
+      b_dim1 = bystride;
+      b_offset = 1 + b_dim1;
+      b -= b_offset;
+
+      /* Early exit if possible */
+      if (m == 0 || n == 0 || k == 0)
+	return;
+
+      /* Empty c first.  */
+      for (j=1; j<=n; j++)
+	for (i=1; i<=m; i++)
+	  c[i + j * c_dim1] = (GFC_COMPLEX_4)0;
+
+      /* Start turning the crank. */
+      i1 = n;
+      for (jj = 1; jj <= i1; jj += 512)
 	{
-	  bbase_y = bbase + y*bystride;
-	  dest_y = dest + y*rystride;
-	  for (n = 0; n < count; n++)
+	  /* Computing MIN */
+	  i2 = 512;
+	  i3 = n - jj + 1;
+	  jsec = min(i2,i3);
+	  ujsec = jsec - jsec % 4;
+	  i2 = k;
+	  for (ll = 1; ll <= i2; ll += 256)
 	    {
-	      abase_n = abase + n*aystride;
-	      bbase_yn = bbase_y[n];
-	      for (x = 0; x < xcount; x++)
+	      /* Computing MIN */
+	      i3 = 256;
+	      i4 = k - ll + 1;
+	      lsec = min(i3,i4);
+	      ulsec = lsec - lsec % 2;
+
+	      i3 = m;
+	      for (ii = 1; ii <= i3; ii += 256)
 		{
-		  dest_y[x] += abase_n[x] * bbase_yn;
+		  /* Computing MIN */
+		  i4 = 256;
+		  i5 = m - ii + 1;
+		  isec = min(i4,i5);
+		  uisec = isec - isec % 2;
+		  i4 = ll + ulsec - 1;
+		  for (l = ll; l <= i4; l += 2)
+		    {
+		      i5 = ii + uisec - 1;
+		      for (i = ii; i <= i5; i += 2)
+			{
+			  t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+					a[i + l * a_dim1];
+			  t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+					a[i + (l + 1) * a_dim1];
+			  t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+					a[i + 1 + l * a_dim1];
+			  t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+					a[i + 1 + (l + 1) * a_dim1];
+			}
+		      if (uisec < isec)
+			{
+			  t1[l - ll + 1 + (isec << 8) - 257] =
+				    a[ii + isec - 1 + l * a_dim1];
+			  t1[l - ll + 2 + (isec << 8) - 257] =
+				    a[ii + isec - 1 + (l + 1) * a_dim1];
+			}
+		    }
+		  if (ulsec < lsec)
+		    {
+		      i4 = ii + isec - 1;
+		      for (i = ii; i<= i4; ++i)
+			{
+			  t1[lsec + ((i - ii + 1) << 8) - 257] =
+				    a[i + (ll + lsec - 1) * a_dim1];
+			}
+		    }
+
+		  uisec = isec - isec % 4;
+		  i4 = jj + ujsec - 1;
+		  for (j = jj; j <= i4; j += 4)
+		    {
+		      i5 = ii + uisec - 1;
+		      for (i = ii; i <= i5; i += 4)
+			{
+			  f11 = c[i + j * c_dim1];
+			  f21 = c[i + 1 + j * c_dim1];
+			  f12 = c[i + (j + 1) * c_dim1];
+			  f22 = c[i + 1 + (j + 1) * c_dim1];
+			  f13 = c[i + (j + 2) * c_dim1];
+			  f23 = c[i + 1 + (j + 2) * c_dim1];
+			  f14 = c[i + (j + 3) * c_dim1];
+			  f24 = c[i + 1 + (j + 3) * c_dim1];
+			  f31 = c[i + 2 + j * c_dim1];
+			  f41 = c[i + 3 + j * c_dim1];
+			  f32 = c[i + 2 + (j + 1) * c_dim1];
+			  f42 = c[i + 3 + (j + 1) * c_dim1];
+			  f33 = c[i + 2 + (j + 2) * c_dim1];
+			  f43 = c[i + 3 + (j + 2) * c_dim1];
+			  f34 = c[i + 2 + (j + 3) * c_dim1];
+			  f44 = c[i + 3 + (j + 3) * c_dim1];
+			  i6 = ll + lsec - 1;
+			  for (l = ll; l <= i6; ++l)
+			    {
+			      f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			    }
+			  c[i + j * c_dim1] = f11;
+			  c[i + 1 + j * c_dim1] = f21;
+			  c[i + (j + 1) * c_dim1] = f12;
+			  c[i + 1 + (j + 1) * c_dim1] = f22;
+			  c[i + (j + 2) * c_dim1] = f13;
+			  c[i + 1 + (j + 2) * c_dim1] = f23;
+			  c[i + (j + 3) * c_dim1] = f14;
+			  c[i + 1 + (j + 3) * c_dim1] = f24;
+			  c[i + 2 + j * c_dim1] = f31;
+			  c[i + 3 + j * c_dim1] = f41;
+			  c[i + 2 + (j + 1) * c_dim1] = f32;
+			  c[i + 3 + (j + 1) * c_dim1] = f42;
+			  c[i + 2 + (j + 2) * c_dim1] = f33;
+			  c[i + 3 + (j + 2) * c_dim1] = f43;
+			  c[i + 2 + (j + 3) * c_dim1] = f34;
+			  c[i + 3 + (j + 3) * c_dim1] = f44;
+			}
+		      if (uisec < isec)
+			{
+			  i5 = ii + isec - 1;
+			  for (i = ii + uisec; i <= i5; ++i)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      f12 = c[i + (j + 1) * c_dim1];
+			      f13 = c[i + (j + 2) * c_dim1];
+			      f14 = c[i + (j + 3) * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 1) * b_dim1];
+				  f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 2) * b_dim1];
+				  f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 3) * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			      c[i + (j + 1) * c_dim1] = f12;
+			      c[i + (j + 2) * c_dim1] = f13;
+			      c[i + (j + 3) * c_dim1] = f14;
+			    }
+			}
+		    }
+		  if (ujsec < jsec)
+		    {
+		      i4 = jj + jsec - 1;
+		      for (j = jj + ujsec; j <= i4; ++j)
+			{
+			  i5 = ii + uisec - 1;
+			  for (i = ii; i <= i5; i += 4)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      f21 = c[i + 1 + j * c_dim1];
+			      f31 = c[i + 2 + j * c_dim1];
+			      f41 = c[i + 3 + j * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+					  257] * b[l + j * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			      c[i + 1 + j * c_dim1] = f21;
+			      c[i + 2 + j * c_dim1] = f31;
+			      c[i + 3 + j * c_dim1] = f41;
+			    }
+			  i5 = ii + isec - 1;
+			  for (i = ii + uisec; i <= i5; ++i)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			    }
+			}
+		    }
 		}
 	    }
 	}
+      return;
     }
   else if (rxstride == 1 && aystride == 1 && bxstride == 1)
     {
@@ -334,7 +567,9 @@ matmul_c4 (gfc_array_c4 * const restrict retarray,
 	for (n = 0; n < count; n++)
 	  for (x = 0; x < xcount; x++)
 	    /* dest[x,y] += a[x,n] * b[n,y] */
-	    dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
+	    dest[x*rxstride + y*rystride] +=
+					abase[x*axstride + n*aystride] *
+					bbase[n*bxstride + y*bystride];
     }
   else if (GFC_DESCRIPTOR_RANK (a) == 1)
     {
@@ -372,5 +607,4 @@ matmul_c4 (gfc_array_c4 * const restrict retarray,
 	}
     }
 }
-
 #endif
diff --git a/libgfortran/generated/matmul_c8.c b/libgfortran/generated/matmul_c8.c
index 8a127da860ecec2c9ccfe242f162355929e38cd0..2321b9effbd69942cfa7b2fdf63254ef1f4ab54e 100644
--- a/libgfortran/generated/matmul_c8.c
+++ b/libgfortran/generated/matmul_c8.c
@@ -32,7 +32,7 @@ see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
 #if defined (HAVE_GFC_COMPLEX_8)
 
 /* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
-   passed to us by the front-end, in which case we'll call it for large
+   passed to us by the front-end, in which case we call it for large
    matrices.  */
 
 typedef void (*blas_call)(const char *, const char *, const int *, const int *,
@@ -99,7 +99,7 @@ matmul_c8 (gfc_array_c8 * const restrict retarray,
 
    o One-dimensional argument B is implicitly treated as a column matrix
      dimensioned [count, 1], so ycount=1.
-  */
+*/
 
   if (retarray->base_addr == NULL)
     {
@@ -127,47 +127,47 @@ matmul_c8 (gfc_array_c8 * const restrict retarray,
 	= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_COMPLEX_8));
       retarray->offset = 0;
     }
-    else if (unlikely (compile_options.bounds_check))
-      {
-	index_type ret_extent, arg_extent;
-
-	if (GFC_DESCRIPTOR_RANK (a) == 1)
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic: is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-	  }
-	else if (GFC_DESCRIPTOR_RANK (b) == 1)
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic: is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);	    
-	  }
-	else
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic for dimension 1:"
-			     " is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic for dimension 2:"
-			     " is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-	  }
-      }
+  else if (unlikely (compile_options.bounds_check))
+    {
+      index_type ret_extent, arg_extent;
+
+      if (GFC_DESCRIPTOR_RANK (a) == 1)
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic: is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+      else if (GFC_DESCRIPTOR_RANK (b) == 1)
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic: is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+      else
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic for dimension 1:"
+			   " is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic for dimension 2:"
+			   " is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+    }
 
 
   if (GFC_DESCRIPTOR_RANK (retarray) == 1)
@@ -230,61 +230,294 @@ matmul_c8 (gfc_array_c8 * const restrict retarray,
   bbase = b->base_addr;
   dest = retarray->base_addr;
 
-
-  /* Now that everything is set up, we're performing the multiplication
+  /* Now that everything is set up, we perform the multiplication
      itself.  */
 
 #define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
 
   if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
       && (bxstride == 1 || bystride == 1)
       && (((float) xcount) * ((float) ycount) * ((float) count)
           > POW3(blas_limit)))
-  {
-    const int m = xcount, n = ycount, k = count, ldc = rystride;
-    const GFC_COMPLEX_8 one = 1, zero = 0;
-    const int lda = (axstride == 1) ? aystride : axstride,
-              ldb = (bxstride == 1) ? bystride : bxstride;
-
-    if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
-      {
-        assert (gemm != NULL);
-        gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k,
-              &one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1);
-        return;
-      }
-  }
-
-  if (rxstride == 1 && axstride == 1 && bxstride == 1)
     {
-      const GFC_COMPLEX_8 * restrict bbase_y;
-      GFC_COMPLEX_8 * restrict dest_y;
-      const GFC_COMPLEX_8 * restrict abase_n;
-      GFC_COMPLEX_8 bbase_yn;
+      const int m = xcount, n = ycount, k = count, ldc = rystride;
+      const GFC_COMPLEX_8 one = 1, zero = 0;
+      const int lda = (axstride == 1) ? aystride : axstride,
+		ldb = (bxstride == 1) ? bystride : bxstride;
 
-      if (rystride == xcount)
-	memset (dest, 0, (sizeof (GFC_COMPLEX_8) * xcount * ycount));
-      else
+      if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
 	{
-	  for (y = 0; y < ycount; y++)
-	    for (x = 0; x < xcount; x++)
-	      dest[x + y*rystride] = (GFC_COMPLEX_8)0;
+	  assert (gemm != NULL);
+	  gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+		&n, &k,	&one, abase, &lda, bbase, &ldb, &zero, dest,
+		&ldc, 1, 1);
+	  return;
 	}
+    }
 
-      for (y = 0; y < ycount; y++)
+  if (rxstride == 1 && axstride == 1 && bxstride == 1)
+    {
+      /* This block of code implements a tuned matmul, derived from
+         Superscalar GEMM-based level 3 BLAS,  Beta version 0.1
+
+               Bo Kagstrom and Per Ling
+               Department of Computing Science
+               Umea University
+               S-901 87 Umea, Sweden
+
+	 from netlib.org, translated to C, and modified for matmul.m4.  */
+
+      const GFC_COMPLEX_8 *a, *b;
+      GFC_COMPLEX_8 *c;
+      const index_type m = xcount, n = ycount, k = count;
+
+      /* System generated locals */
+      index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+		 i1, i2, i3, i4, i5, i6;
+
+      /* Local variables */
+      GFC_COMPLEX_8 t1[65536], /* was [256][256] */
+		 f11, f12, f21, f22, f31, f32, f41, f42,
+		 f13, f14, f23, f24, f33, f34, f43, f44;
+      index_type i, j, l, ii, jj, ll;
+      index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+      a = abase;
+      b = bbase;
+      c = retarray->base_addr;
+
+      /* Parameter adjustments */
+      c_dim1 = rystride;
+      c_offset = 1 + c_dim1;
+      c -= c_offset;
+      a_dim1 = aystride;
+      a_offset = 1 + a_dim1;
+      a -= a_offset;
+      b_dim1 = bystride;
+      b_offset = 1 + b_dim1;
+      b -= b_offset;
+
+      /* Early exit if possible */
+      if (m == 0 || n == 0 || k == 0)
+	return;
+
+      /* Empty c first.  */
+      for (j=1; j<=n; j++)
+	for (i=1; i<=m; i++)
+	  c[i + j * c_dim1] = (GFC_COMPLEX_8)0;
+
+      /* Start turning the crank. */
+      i1 = n;
+      for (jj = 1; jj <= i1; jj += 512)
 	{
-	  bbase_y = bbase + y*bystride;
-	  dest_y = dest + y*rystride;
-	  for (n = 0; n < count; n++)
+	  /* Computing MIN */
+	  i2 = 512;
+	  i3 = n - jj + 1;
+	  jsec = min(i2,i3);
+	  ujsec = jsec - jsec % 4;
+	  i2 = k;
+	  for (ll = 1; ll <= i2; ll += 256)
 	    {
-	      abase_n = abase + n*aystride;
-	      bbase_yn = bbase_y[n];
-	      for (x = 0; x < xcount; x++)
+	      /* Computing MIN */
+	      i3 = 256;
+	      i4 = k - ll + 1;
+	      lsec = min(i3,i4);
+	      ulsec = lsec - lsec % 2;
+
+	      i3 = m;
+	      for (ii = 1; ii <= i3; ii += 256)
 		{
-		  dest_y[x] += abase_n[x] * bbase_yn;
+		  /* Computing MIN */
+		  i4 = 256;
+		  i5 = m - ii + 1;
+		  isec = min(i4,i5);
+		  uisec = isec - isec % 2;
+		  i4 = ll + ulsec - 1;
+		  for (l = ll; l <= i4; l += 2)
+		    {
+		      i5 = ii + uisec - 1;
+		      for (i = ii; i <= i5; i += 2)
+			{
+			  t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+					a[i + l * a_dim1];
+			  t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+					a[i + (l + 1) * a_dim1];
+			  t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+					a[i + 1 + l * a_dim1];
+			  t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+					a[i + 1 + (l + 1) * a_dim1];
+			}
+		      if (uisec < isec)
+			{
+			  t1[l - ll + 1 + (isec << 8) - 257] =
+				    a[ii + isec - 1 + l * a_dim1];
+			  t1[l - ll + 2 + (isec << 8) - 257] =
+				    a[ii + isec - 1 + (l + 1) * a_dim1];
+			}
+		    }
+		  if (ulsec < lsec)
+		    {
+		      i4 = ii + isec - 1;
+		      for (i = ii; i<= i4; ++i)
+			{
+			  t1[lsec + ((i - ii + 1) << 8) - 257] =
+				    a[i + (ll + lsec - 1) * a_dim1];
+			}
+		    }
+
+		  uisec = isec - isec % 4;
+		  i4 = jj + ujsec - 1;
+		  for (j = jj; j <= i4; j += 4)
+		    {
+		      i5 = ii + uisec - 1;
+		      for (i = ii; i <= i5; i += 4)
+			{
+			  f11 = c[i + j * c_dim1];
+			  f21 = c[i + 1 + j * c_dim1];
+			  f12 = c[i + (j + 1) * c_dim1];
+			  f22 = c[i + 1 + (j + 1) * c_dim1];
+			  f13 = c[i + (j + 2) * c_dim1];
+			  f23 = c[i + 1 + (j + 2) * c_dim1];
+			  f14 = c[i + (j + 3) * c_dim1];
+			  f24 = c[i + 1 + (j + 3) * c_dim1];
+			  f31 = c[i + 2 + j * c_dim1];
+			  f41 = c[i + 3 + j * c_dim1];
+			  f32 = c[i + 2 + (j + 1) * c_dim1];
+			  f42 = c[i + 3 + (j + 1) * c_dim1];
+			  f33 = c[i + 2 + (j + 2) * c_dim1];
+			  f43 = c[i + 3 + (j + 2) * c_dim1];
+			  f34 = c[i + 2 + (j + 3) * c_dim1];
+			  f44 = c[i + 3 + (j + 3) * c_dim1];
+			  i6 = ll + lsec - 1;
+			  for (l = ll; l <= i6; ++l)
+			    {
+			      f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			    }
+			  c[i + j * c_dim1] = f11;
+			  c[i + 1 + j * c_dim1] = f21;
+			  c[i + (j + 1) * c_dim1] = f12;
+			  c[i + 1 + (j + 1) * c_dim1] = f22;
+			  c[i + (j + 2) * c_dim1] = f13;
+			  c[i + 1 + (j + 2) * c_dim1] = f23;
+			  c[i + (j + 3) * c_dim1] = f14;
+			  c[i + 1 + (j + 3) * c_dim1] = f24;
+			  c[i + 2 + j * c_dim1] = f31;
+			  c[i + 3 + j * c_dim1] = f41;
+			  c[i + 2 + (j + 1) * c_dim1] = f32;
+			  c[i + 3 + (j + 1) * c_dim1] = f42;
+			  c[i + 2 + (j + 2) * c_dim1] = f33;
+			  c[i + 3 + (j + 2) * c_dim1] = f43;
+			  c[i + 2 + (j + 3) * c_dim1] = f34;
+			  c[i + 3 + (j + 3) * c_dim1] = f44;
+			}
+		      if (uisec < isec)
+			{
+			  i5 = ii + isec - 1;
+			  for (i = ii + uisec; i <= i5; ++i)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      f12 = c[i + (j + 1) * c_dim1];
+			      f13 = c[i + (j + 2) * c_dim1];
+			      f14 = c[i + (j + 3) * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 1) * b_dim1];
+				  f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 2) * b_dim1];
+				  f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 3) * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			      c[i + (j + 1) * c_dim1] = f12;
+			      c[i + (j + 2) * c_dim1] = f13;
+			      c[i + (j + 3) * c_dim1] = f14;
+			    }
+			}
+		    }
+		  if (ujsec < jsec)
+		    {
+		      i4 = jj + jsec - 1;
+		      for (j = jj + ujsec; j <= i4; ++j)
+			{
+			  i5 = ii + uisec - 1;
+			  for (i = ii; i <= i5; i += 4)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      f21 = c[i + 1 + j * c_dim1];
+			      f31 = c[i + 2 + j * c_dim1];
+			      f41 = c[i + 3 + j * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+					  257] * b[l + j * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			      c[i + 1 + j * c_dim1] = f21;
+			      c[i + 2 + j * c_dim1] = f31;
+			      c[i + 3 + j * c_dim1] = f41;
+			    }
+			  i5 = ii + isec - 1;
+			  for (i = ii + uisec; i <= i5; ++i)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			    }
+			}
+		    }
 		}
 	    }
 	}
+      return;
     }
   else if (rxstride == 1 && aystride == 1 && bxstride == 1)
     {
@@ -334,7 +567,9 @@ matmul_c8 (gfc_array_c8 * const restrict retarray,
 	for (n = 0; n < count; n++)
 	  for (x = 0; x < xcount; x++)
 	    /* dest[x,y] += a[x,n] * b[n,y] */
-	    dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
+	    dest[x*rxstride + y*rystride] +=
+					abase[x*axstride + n*aystride] *
+					bbase[n*bxstride + y*bystride];
     }
   else if (GFC_DESCRIPTOR_RANK (a) == 1)
     {
@@ -372,5 +607,4 @@ matmul_c8 (gfc_array_c8 * const restrict retarray,
 	}
     }
 }
-
 #endif
diff --git a/libgfortran/generated/matmul_i1.c b/libgfortran/generated/matmul_i1.c
index fdb309269110266bc05c4d2629aba77a12f926bc..81c067b2ce1ef1524470ebefe96c3d40f5b899be 100644
--- a/libgfortran/generated/matmul_i1.c
+++ b/libgfortran/generated/matmul_i1.c
@@ -32,7 +32,7 @@ see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
 #if defined (HAVE_GFC_INTEGER_1)
 
 /* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
-   passed to us by the front-end, in which case we'll call it for large
+   passed to us by the front-end, in which case we call it for large
    matrices.  */
 
 typedef void (*blas_call)(const char *, const char *, const int *, const int *,
@@ -99,7 +99,7 @@ matmul_i1 (gfc_array_i1 * const restrict retarray,
 
    o One-dimensional argument B is implicitly treated as a column matrix
      dimensioned [count, 1], so ycount=1.
-  */
+*/
 
   if (retarray->base_addr == NULL)
     {
@@ -127,47 +127,47 @@ matmul_i1 (gfc_array_i1 * const restrict retarray,
 	= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_1));
       retarray->offset = 0;
     }
-    else if (unlikely (compile_options.bounds_check))
-      {
-	index_type ret_extent, arg_extent;
-
-	if (GFC_DESCRIPTOR_RANK (a) == 1)
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic: is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-	  }
-	else if (GFC_DESCRIPTOR_RANK (b) == 1)
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic: is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);	    
-	  }
-	else
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic for dimension 1:"
-			     " is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic for dimension 2:"
-			     " is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-	  }
-      }
+  else if (unlikely (compile_options.bounds_check))
+    {
+      index_type ret_extent, arg_extent;
+
+      if (GFC_DESCRIPTOR_RANK (a) == 1)
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic: is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+      else if (GFC_DESCRIPTOR_RANK (b) == 1)
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic: is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+      else
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic for dimension 1:"
+			   " is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic for dimension 2:"
+			   " is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+    }
 
 
   if (GFC_DESCRIPTOR_RANK (retarray) == 1)
@@ -230,61 +230,294 @@ matmul_i1 (gfc_array_i1 * const restrict retarray,
   bbase = b->base_addr;
   dest = retarray->base_addr;
 
-
-  /* Now that everything is set up, we're performing the multiplication
+  /* Now that everything is set up, we perform the multiplication
      itself.  */
 
 #define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
 
   if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
       && (bxstride == 1 || bystride == 1)
       && (((float) xcount) * ((float) ycount) * ((float) count)
           > POW3(blas_limit)))
-  {
-    const int m = xcount, n = ycount, k = count, ldc = rystride;
-    const GFC_INTEGER_1 one = 1, zero = 0;
-    const int lda = (axstride == 1) ? aystride : axstride,
-              ldb = (bxstride == 1) ? bystride : bxstride;
-
-    if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
-      {
-        assert (gemm != NULL);
-        gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k,
-              &one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1);
-        return;
-      }
-  }
-
-  if (rxstride == 1 && axstride == 1 && bxstride == 1)
     {
-      const GFC_INTEGER_1 * restrict bbase_y;
-      GFC_INTEGER_1 * restrict dest_y;
-      const GFC_INTEGER_1 * restrict abase_n;
-      GFC_INTEGER_1 bbase_yn;
+      const int m = xcount, n = ycount, k = count, ldc = rystride;
+      const GFC_INTEGER_1 one = 1, zero = 0;
+      const int lda = (axstride == 1) ? aystride : axstride,
+		ldb = (bxstride == 1) ? bystride : bxstride;
 
-      if (rystride == xcount)
-	memset (dest, 0, (sizeof (GFC_INTEGER_1) * xcount * ycount));
-      else
+      if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
 	{
-	  for (y = 0; y < ycount; y++)
-	    for (x = 0; x < xcount; x++)
-	      dest[x + y*rystride] = (GFC_INTEGER_1)0;
+	  assert (gemm != NULL);
+	  gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+		&n, &k,	&one, abase, &lda, bbase, &ldb, &zero, dest,
+		&ldc, 1, 1);
+	  return;
 	}
+    }
 
-      for (y = 0; y < ycount; y++)
+  if (rxstride == 1 && axstride == 1 && bxstride == 1)
+    {
+      /* This block of code implements a tuned matmul, derived from
+         Superscalar GEMM-based level 3 BLAS,  Beta version 0.1
+
+               Bo Kagstrom and Per Ling
+               Department of Computing Science
+               Umea University
+               S-901 87 Umea, Sweden
+
+	 from netlib.org, translated to C, and modified for matmul.m4.  */
+
+      const GFC_INTEGER_1 *a, *b;
+      GFC_INTEGER_1 *c;
+      const index_type m = xcount, n = ycount, k = count;
+
+      /* System generated locals */
+      index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+		 i1, i2, i3, i4, i5, i6;
+
+      /* Local variables */
+      GFC_INTEGER_1 t1[65536], /* was [256][256] */
+		 f11, f12, f21, f22, f31, f32, f41, f42,
+		 f13, f14, f23, f24, f33, f34, f43, f44;
+      index_type i, j, l, ii, jj, ll;
+      index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+      a = abase;
+      b = bbase;
+      c = retarray->base_addr;
+
+      /* Parameter adjustments */
+      c_dim1 = rystride;
+      c_offset = 1 + c_dim1;
+      c -= c_offset;
+      a_dim1 = aystride;
+      a_offset = 1 + a_dim1;
+      a -= a_offset;
+      b_dim1 = bystride;
+      b_offset = 1 + b_dim1;
+      b -= b_offset;
+
+      /* Early exit if possible */
+      if (m == 0 || n == 0 || k == 0)
+	return;
+
+      /* Empty c first.  */
+      for (j=1; j<=n; j++)
+	for (i=1; i<=m; i++)
+	  c[i + j * c_dim1] = (GFC_INTEGER_1)0;
+
+      /* Start turning the crank. */
+      i1 = n;
+      for (jj = 1; jj <= i1; jj += 512)
 	{
-	  bbase_y = bbase + y*bystride;
-	  dest_y = dest + y*rystride;
-	  for (n = 0; n < count; n++)
+	  /* Computing MIN */
+	  i2 = 512;
+	  i3 = n - jj + 1;
+	  jsec = min(i2,i3);
+	  ujsec = jsec - jsec % 4;
+	  i2 = k;
+	  for (ll = 1; ll <= i2; ll += 256)
 	    {
-	      abase_n = abase + n*aystride;
-	      bbase_yn = bbase_y[n];
-	      for (x = 0; x < xcount; x++)
+	      /* Computing MIN */
+	      i3 = 256;
+	      i4 = k - ll + 1;
+	      lsec = min(i3,i4);
+	      ulsec = lsec - lsec % 2;
+
+	      i3 = m;
+	      for (ii = 1; ii <= i3; ii += 256)
 		{
-		  dest_y[x] += abase_n[x] * bbase_yn;
+		  /* Computing MIN */
+		  i4 = 256;
+		  i5 = m - ii + 1;
+		  isec = min(i4,i5);
+		  uisec = isec - isec % 2;
+		  i4 = ll + ulsec - 1;
+		  for (l = ll; l <= i4; l += 2)
+		    {
+		      i5 = ii + uisec - 1;
+		      for (i = ii; i <= i5; i += 2)
+			{
+			  t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+					a[i + l * a_dim1];
+			  t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+					a[i + (l + 1) * a_dim1];
+			  t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+					a[i + 1 + l * a_dim1];
+			  t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+					a[i + 1 + (l + 1) * a_dim1];
+			}
+		      if (uisec < isec)
+			{
+			  t1[l - ll + 1 + (isec << 8) - 257] =
+				    a[ii + isec - 1 + l * a_dim1];
+			  t1[l - ll + 2 + (isec << 8) - 257] =
+				    a[ii + isec - 1 + (l + 1) * a_dim1];
+			}
+		    }
+		  if (ulsec < lsec)
+		    {
+		      i4 = ii + isec - 1;
+		      for (i = ii; i<= i4; ++i)
+			{
+			  t1[lsec + ((i - ii + 1) << 8) - 257] =
+				    a[i + (ll + lsec - 1) * a_dim1];
+			}
+		    }
+
+		  uisec = isec - isec % 4;
+		  i4 = jj + ujsec - 1;
+		  for (j = jj; j <= i4; j += 4)
+		    {
+		      i5 = ii + uisec - 1;
+		      for (i = ii; i <= i5; i += 4)
+			{
+			  f11 = c[i + j * c_dim1];
+			  f21 = c[i + 1 + j * c_dim1];
+			  f12 = c[i + (j + 1) * c_dim1];
+			  f22 = c[i + 1 + (j + 1) * c_dim1];
+			  f13 = c[i + (j + 2) * c_dim1];
+			  f23 = c[i + 1 + (j + 2) * c_dim1];
+			  f14 = c[i + (j + 3) * c_dim1];
+			  f24 = c[i + 1 + (j + 3) * c_dim1];
+			  f31 = c[i + 2 + j * c_dim1];
+			  f41 = c[i + 3 + j * c_dim1];
+			  f32 = c[i + 2 + (j + 1) * c_dim1];
+			  f42 = c[i + 3 + (j + 1) * c_dim1];
+			  f33 = c[i + 2 + (j + 2) * c_dim1];
+			  f43 = c[i + 3 + (j + 2) * c_dim1];
+			  f34 = c[i + 2 + (j + 3) * c_dim1];
+			  f44 = c[i + 3 + (j + 3) * c_dim1];
+			  i6 = ll + lsec - 1;
+			  for (l = ll; l <= i6; ++l)
+			    {
+			      f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			    }
+			  c[i + j * c_dim1] = f11;
+			  c[i + 1 + j * c_dim1] = f21;
+			  c[i + (j + 1) * c_dim1] = f12;
+			  c[i + 1 + (j + 1) * c_dim1] = f22;
+			  c[i + (j + 2) * c_dim1] = f13;
+			  c[i + 1 + (j + 2) * c_dim1] = f23;
+			  c[i + (j + 3) * c_dim1] = f14;
+			  c[i + 1 + (j + 3) * c_dim1] = f24;
+			  c[i + 2 + j * c_dim1] = f31;
+			  c[i + 3 + j * c_dim1] = f41;
+			  c[i + 2 + (j + 1) * c_dim1] = f32;
+			  c[i + 3 + (j + 1) * c_dim1] = f42;
+			  c[i + 2 + (j + 2) * c_dim1] = f33;
+			  c[i + 3 + (j + 2) * c_dim1] = f43;
+			  c[i + 2 + (j + 3) * c_dim1] = f34;
+			  c[i + 3 + (j + 3) * c_dim1] = f44;
+			}
+		      if (uisec < isec)
+			{
+			  i5 = ii + isec - 1;
+			  for (i = ii + uisec; i <= i5; ++i)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      f12 = c[i + (j + 1) * c_dim1];
+			      f13 = c[i + (j + 2) * c_dim1];
+			      f14 = c[i + (j + 3) * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 1) * b_dim1];
+				  f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 2) * b_dim1];
+				  f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 3) * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			      c[i + (j + 1) * c_dim1] = f12;
+			      c[i + (j + 2) * c_dim1] = f13;
+			      c[i + (j + 3) * c_dim1] = f14;
+			    }
+			}
+		    }
+		  if (ujsec < jsec)
+		    {
+		      i4 = jj + jsec - 1;
+		      for (j = jj + ujsec; j <= i4; ++j)
+			{
+			  i5 = ii + uisec - 1;
+			  for (i = ii; i <= i5; i += 4)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      f21 = c[i + 1 + j * c_dim1];
+			      f31 = c[i + 2 + j * c_dim1];
+			      f41 = c[i + 3 + j * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+					  257] * b[l + j * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			      c[i + 1 + j * c_dim1] = f21;
+			      c[i + 2 + j * c_dim1] = f31;
+			      c[i + 3 + j * c_dim1] = f41;
+			    }
+			  i5 = ii + isec - 1;
+			  for (i = ii + uisec; i <= i5; ++i)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			    }
+			}
+		    }
 		}
 	    }
 	}
+      return;
     }
   else if (rxstride == 1 && aystride == 1 && bxstride == 1)
     {
@@ -334,7 +567,9 @@ matmul_i1 (gfc_array_i1 * const restrict retarray,
 	for (n = 0; n < count; n++)
 	  for (x = 0; x < xcount; x++)
 	    /* dest[x,y] += a[x,n] * b[n,y] */
-	    dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
+	    dest[x*rxstride + y*rystride] +=
+					abase[x*axstride + n*aystride] *
+					bbase[n*bxstride + y*bystride];
     }
   else if (GFC_DESCRIPTOR_RANK (a) == 1)
     {
@@ -372,5 +607,4 @@ matmul_i1 (gfc_array_i1 * const restrict retarray,
 	}
     }
 }
-
 #endif
diff --git a/libgfortran/generated/matmul_i16.c b/libgfortran/generated/matmul_i16.c
index 80eb63c31ceb9b130a9f598618200c83b4b42b83..d1b1761014a263c8adea4a0bedebead061c3679f 100644
--- a/libgfortran/generated/matmul_i16.c
+++ b/libgfortran/generated/matmul_i16.c
@@ -32,7 +32,7 @@ see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
 #if defined (HAVE_GFC_INTEGER_16)
 
 /* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
-   passed to us by the front-end, in which case we'll call it for large
+   passed to us by the front-end, in which case we call it for large
    matrices.  */
 
 typedef void (*blas_call)(const char *, const char *, const int *, const int *,
@@ -99,7 +99,7 @@ matmul_i16 (gfc_array_i16 * const restrict retarray,
 
    o One-dimensional argument B is implicitly treated as a column matrix
      dimensioned [count, 1], so ycount=1.
-  */
+*/
 
   if (retarray->base_addr == NULL)
     {
@@ -127,47 +127,47 @@ matmul_i16 (gfc_array_i16 * const restrict retarray,
 	= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_16));
       retarray->offset = 0;
     }
-    else if (unlikely (compile_options.bounds_check))
-      {
-	index_type ret_extent, arg_extent;
-
-	if (GFC_DESCRIPTOR_RANK (a) == 1)
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic: is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-	  }
-	else if (GFC_DESCRIPTOR_RANK (b) == 1)
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic: is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);	    
-	  }
-	else
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic for dimension 1:"
-			     " is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic for dimension 2:"
-			     " is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-	  }
-      }
+  else if (unlikely (compile_options.bounds_check))
+    {
+      index_type ret_extent, arg_extent;
+
+      if (GFC_DESCRIPTOR_RANK (a) == 1)
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic: is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+      else if (GFC_DESCRIPTOR_RANK (b) == 1)
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic: is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+      else
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic for dimension 1:"
+			   " is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic for dimension 2:"
+			   " is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+    }
 
 
   if (GFC_DESCRIPTOR_RANK (retarray) == 1)
@@ -230,61 +230,294 @@ matmul_i16 (gfc_array_i16 * const restrict retarray,
   bbase = b->base_addr;
   dest = retarray->base_addr;
 
-
-  /* Now that everything is set up, we're performing the multiplication
+  /* Now that everything is set up, we perform the multiplication
      itself.  */
 
 #define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
 
   if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
       && (bxstride == 1 || bystride == 1)
       && (((float) xcount) * ((float) ycount) * ((float) count)
           > POW3(blas_limit)))
-  {
-    const int m = xcount, n = ycount, k = count, ldc = rystride;
-    const GFC_INTEGER_16 one = 1, zero = 0;
-    const int lda = (axstride == 1) ? aystride : axstride,
-              ldb = (bxstride == 1) ? bystride : bxstride;
-
-    if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
-      {
-        assert (gemm != NULL);
-        gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k,
-              &one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1);
-        return;
-      }
-  }
-
-  if (rxstride == 1 && axstride == 1 && bxstride == 1)
     {
-      const GFC_INTEGER_16 * restrict bbase_y;
-      GFC_INTEGER_16 * restrict dest_y;
-      const GFC_INTEGER_16 * restrict abase_n;
-      GFC_INTEGER_16 bbase_yn;
+      const int m = xcount, n = ycount, k = count, ldc = rystride;
+      const GFC_INTEGER_16 one = 1, zero = 0;
+      const int lda = (axstride == 1) ? aystride : axstride,
+		ldb = (bxstride == 1) ? bystride : bxstride;
 
-      if (rystride == xcount)
-	memset (dest, 0, (sizeof (GFC_INTEGER_16) * xcount * ycount));
-      else
+      if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
 	{
-	  for (y = 0; y < ycount; y++)
-	    for (x = 0; x < xcount; x++)
-	      dest[x + y*rystride] = (GFC_INTEGER_16)0;
+	  assert (gemm != NULL);
+	  gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+		&n, &k,	&one, abase, &lda, bbase, &ldb, &zero, dest,
+		&ldc, 1, 1);
+	  return;
 	}
+    }
 
-      for (y = 0; y < ycount; y++)
+  if (rxstride == 1 && axstride == 1 && bxstride == 1)
+    {
+      /* This block of code implements a tuned matmul, derived from
+         Superscalar GEMM-based level 3 BLAS,  Beta version 0.1
+
+               Bo Kagstrom and Per Ling
+               Department of Computing Science
+               Umea University
+               S-901 87 Umea, Sweden
+
+	 from netlib.org, translated to C, and modified for matmul.m4.  */
+
+      const GFC_INTEGER_16 *a, *b;
+      GFC_INTEGER_16 *c;
+      const index_type m = xcount, n = ycount, k = count;
+
+      /* System generated locals */
+      index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+		 i1, i2, i3, i4, i5, i6;
+
+      /* Local variables */
+      GFC_INTEGER_16 t1[65536], /* was [256][256] */
+		 f11, f12, f21, f22, f31, f32, f41, f42,
+		 f13, f14, f23, f24, f33, f34, f43, f44;
+      index_type i, j, l, ii, jj, ll;
+      index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+      a = abase;
+      b = bbase;
+      c = retarray->base_addr;
+
+      /* Parameter adjustments */
+      c_dim1 = rystride;
+      c_offset = 1 + c_dim1;
+      c -= c_offset;
+      a_dim1 = aystride;
+      a_offset = 1 + a_dim1;
+      a -= a_offset;
+      b_dim1 = bystride;
+      b_offset = 1 + b_dim1;
+      b -= b_offset;
+
+      /* Early exit if possible */
+      if (m == 0 || n == 0 || k == 0)
+	return;
+
+      /* Empty c first.  */
+      for (j=1; j<=n; j++)
+	for (i=1; i<=m; i++)
+	  c[i + j * c_dim1] = (GFC_INTEGER_16)0;
+
+      /* Start turning the crank. */
+      i1 = n;
+      for (jj = 1; jj <= i1; jj += 512)
 	{
-	  bbase_y = bbase + y*bystride;
-	  dest_y = dest + y*rystride;
-	  for (n = 0; n < count; n++)
+	  /* Computing MIN */
+	  i2 = 512;
+	  i3 = n - jj + 1;
+	  jsec = min(i2,i3);
+	  ujsec = jsec - jsec % 4;
+	  i2 = k;
+	  for (ll = 1; ll <= i2; ll += 256)
 	    {
-	      abase_n = abase + n*aystride;
-	      bbase_yn = bbase_y[n];
-	      for (x = 0; x < xcount; x++)
+	      /* Computing MIN */
+	      i3 = 256;
+	      i4 = k - ll + 1;
+	      lsec = min(i3,i4);
+	      ulsec = lsec - lsec % 2;
+
+	      i3 = m;
+	      for (ii = 1; ii <= i3; ii += 256)
 		{
-		  dest_y[x] += abase_n[x] * bbase_yn;
+		  /* Computing MIN */
+		  i4 = 256;
+		  i5 = m - ii + 1;
+		  isec = min(i4,i5);
+		  uisec = isec - isec % 2;
+		  i4 = ll + ulsec - 1;
+		  for (l = ll; l <= i4; l += 2)
+		    {
+		      i5 = ii + uisec - 1;
+		      for (i = ii; i <= i5; i += 2)
+			{
+			  t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+					a[i + l * a_dim1];
+			  t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+					a[i + (l + 1) * a_dim1];
+			  t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+					a[i + 1 + l * a_dim1];
+			  t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+					a[i + 1 + (l + 1) * a_dim1];
+			}
+		      if (uisec < isec)
+			{
+			  t1[l - ll + 1 + (isec << 8) - 257] =
+				    a[ii + isec - 1 + l * a_dim1];
+			  t1[l - ll + 2 + (isec << 8) - 257] =
+				    a[ii + isec - 1 + (l + 1) * a_dim1];
+			}
+		    }
+		  if (ulsec < lsec)
+		    {
+		      i4 = ii + isec - 1;
+		      for (i = ii; i<= i4; ++i)
+			{
+			  t1[lsec + ((i - ii + 1) << 8) - 257] =
+				    a[i + (ll + lsec - 1) * a_dim1];
+			}
+		    }
+
+		  uisec = isec - isec % 4;
+		  i4 = jj + ujsec - 1;
+		  for (j = jj; j <= i4; j += 4)
+		    {
+		      i5 = ii + uisec - 1;
+		      for (i = ii; i <= i5; i += 4)
+			{
+			  f11 = c[i + j * c_dim1];
+			  f21 = c[i + 1 + j * c_dim1];
+			  f12 = c[i + (j + 1) * c_dim1];
+			  f22 = c[i + 1 + (j + 1) * c_dim1];
+			  f13 = c[i + (j + 2) * c_dim1];
+			  f23 = c[i + 1 + (j + 2) * c_dim1];
+			  f14 = c[i + (j + 3) * c_dim1];
+			  f24 = c[i + 1 + (j + 3) * c_dim1];
+			  f31 = c[i + 2 + j * c_dim1];
+			  f41 = c[i + 3 + j * c_dim1];
+			  f32 = c[i + 2 + (j + 1) * c_dim1];
+			  f42 = c[i + 3 + (j + 1) * c_dim1];
+			  f33 = c[i + 2 + (j + 2) * c_dim1];
+			  f43 = c[i + 3 + (j + 2) * c_dim1];
+			  f34 = c[i + 2 + (j + 3) * c_dim1];
+			  f44 = c[i + 3 + (j + 3) * c_dim1];
+			  i6 = ll + lsec - 1;
+			  for (l = ll; l <= i6; ++l)
+			    {
+			      f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			    }
+			  c[i + j * c_dim1] = f11;
+			  c[i + 1 + j * c_dim1] = f21;
+			  c[i + (j + 1) * c_dim1] = f12;
+			  c[i + 1 + (j + 1) * c_dim1] = f22;
+			  c[i + (j + 2) * c_dim1] = f13;
+			  c[i + 1 + (j + 2) * c_dim1] = f23;
+			  c[i + (j + 3) * c_dim1] = f14;
+			  c[i + 1 + (j + 3) * c_dim1] = f24;
+			  c[i + 2 + j * c_dim1] = f31;
+			  c[i + 3 + j * c_dim1] = f41;
+			  c[i + 2 + (j + 1) * c_dim1] = f32;
+			  c[i + 3 + (j + 1) * c_dim1] = f42;
+			  c[i + 2 + (j + 2) * c_dim1] = f33;
+			  c[i + 3 + (j + 2) * c_dim1] = f43;
+			  c[i + 2 + (j + 3) * c_dim1] = f34;
+			  c[i + 3 + (j + 3) * c_dim1] = f44;
+			}
+		      if (uisec < isec)
+			{
+			  i5 = ii + isec - 1;
+			  for (i = ii + uisec; i <= i5; ++i)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      f12 = c[i + (j + 1) * c_dim1];
+			      f13 = c[i + (j + 2) * c_dim1];
+			      f14 = c[i + (j + 3) * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 1) * b_dim1];
+				  f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 2) * b_dim1];
+				  f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 3) * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			      c[i + (j + 1) * c_dim1] = f12;
+			      c[i + (j + 2) * c_dim1] = f13;
+			      c[i + (j + 3) * c_dim1] = f14;
+			    }
+			}
+		    }
+		  if (ujsec < jsec)
+		    {
+		      i4 = jj + jsec - 1;
+		      for (j = jj + ujsec; j <= i4; ++j)
+			{
+			  i5 = ii + uisec - 1;
+			  for (i = ii; i <= i5; i += 4)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      f21 = c[i + 1 + j * c_dim1];
+			      f31 = c[i + 2 + j * c_dim1];
+			      f41 = c[i + 3 + j * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+					  257] * b[l + j * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			      c[i + 1 + j * c_dim1] = f21;
+			      c[i + 2 + j * c_dim1] = f31;
+			      c[i + 3 + j * c_dim1] = f41;
+			    }
+			  i5 = ii + isec - 1;
+			  for (i = ii + uisec; i <= i5; ++i)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			    }
+			}
+		    }
 		}
 	    }
 	}
+      return;
     }
   else if (rxstride == 1 && aystride == 1 && bxstride == 1)
     {
@@ -334,7 +567,9 @@ matmul_i16 (gfc_array_i16 * const restrict retarray,
 	for (n = 0; n < count; n++)
 	  for (x = 0; x < xcount; x++)
 	    /* dest[x,y] += a[x,n] * b[n,y] */
-	    dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
+	    dest[x*rxstride + y*rystride] +=
+					abase[x*axstride + n*aystride] *
+					bbase[n*bxstride + y*bystride];
     }
   else if (GFC_DESCRIPTOR_RANK (a) == 1)
     {
@@ -372,5 +607,4 @@ matmul_i16 (gfc_array_i16 * const restrict retarray,
 	}
     }
 }
-
 #endif
diff --git a/libgfortran/generated/matmul_i2.c b/libgfortran/generated/matmul_i2.c
index 281a0133cbbe66273f9200164566c836b989b9f6..5a06fcc6a2c0e0f2cc345537cda81d29a0a203f3 100644
--- a/libgfortran/generated/matmul_i2.c
+++ b/libgfortran/generated/matmul_i2.c
@@ -32,7 +32,7 @@ see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
 #if defined (HAVE_GFC_INTEGER_2)
 
 /* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
-   passed to us by the front-end, in which case we'll call it for large
+   passed to us by the front-end, in which case we call it for large
    matrices.  */
 
 typedef void (*blas_call)(const char *, const char *, const int *, const int *,
@@ -99,7 +99,7 @@ matmul_i2 (gfc_array_i2 * const restrict retarray,
 
    o One-dimensional argument B is implicitly treated as a column matrix
      dimensioned [count, 1], so ycount=1.
-  */
+*/
 
   if (retarray->base_addr == NULL)
     {
@@ -127,47 +127,47 @@ matmul_i2 (gfc_array_i2 * const restrict retarray,
 	= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_2));
       retarray->offset = 0;
     }
-    else if (unlikely (compile_options.bounds_check))
-      {
-	index_type ret_extent, arg_extent;
-
-	if (GFC_DESCRIPTOR_RANK (a) == 1)
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic: is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-	  }
-	else if (GFC_DESCRIPTOR_RANK (b) == 1)
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic: is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);	    
-	  }
-	else
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic for dimension 1:"
-			     " is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic for dimension 2:"
-			     " is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-	  }
-      }
+  else if (unlikely (compile_options.bounds_check))
+    {
+      index_type ret_extent, arg_extent;
+
+      if (GFC_DESCRIPTOR_RANK (a) == 1)
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic: is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+      else if (GFC_DESCRIPTOR_RANK (b) == 1)
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic: is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+      else
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic for dimension 1:"
+			   " is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic for dimension 2:"
+			   " is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+    }
 
 
   if (GFC_DESCRIPTOR_RANK (retarray) == 1)
@@ -230,61 +230,294 @@ matmul_i2 (gfc_array_i2 * const restrict retarray,
   bbase = b->base_addr;
   dest = retarray->base_addr;
 
-
-  /* Now that everything is set up, we're performing the multiplication
+  /* Now that everything is set up, we perform the multiplication
      itself.  */
 
 #define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
 
   if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
       && (bxstride == 1 || bystride == 1)
       && (((float) xcount) * ((float) ycount) * ((float) count)
           > POW3(blas_limit)))
-  {
-    const int m = xcount, n = ycount, k = count, ldc = rystride;
-    const GFC_INTEGER_2 one = 1, zero = 0;
-    const int lda = (axstride == 1) ? aystride : axstride,
-              ldb = (bxstride == 1) ? bystride : bxstride;
-
-    if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
-      {
-        assert (gemm != NULL);
-        gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k,
-              &one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1);
-        return;
-      }
-  }
-
-  if (rxstride == 1 && axstride == 1 && bxstride == 1)
     {
-      const GFC_INTEGER_2 * restrict bbase_y;
-      GFC_INTEGER_2 * restrict dest_y;
-      const GFC_INTEGER_2 * restrict abase_n;
-      GFC_INTEGER_2 bbase_yn;
+      const int m = xcount, n = ycount, k = count, ldc = rystride;
+      const GFC_INTEGER_2 one = 1, zero = 0;
+      const int lda = (axstride == 1) ? aystride : axstride,
+		ldb = (bxstride == 1) ? bystride : bxstride;
 
-      if (rystride == xcount)
-	memset (dest, 0, (sizeof (GFC_INTEGER_2) * xcount * ycount));
-      else
+      if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
 	{
-	  for (y = 0; y < ycount; y++)
-	    for (x = 0; x < xcount; x++)
-	      dest[x + y*rystride] = (GFC_INTEGER_2)0;
+	  assert (gemm != NULL);
+	  gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+		&n, &k,	&one, abase, &lda, bbase, &ldb, &zero, dest,
+		&ldc, 1, 1);
+	  return;
 	}
+    }
 
-      for (y = 0; y < ycount; y++)
+  if (rxstride == 1 && axstride == 1 && bxstride == 1)
+    {
+      /* This block of code implements a tuned matmul, derived from
+         Superscalar GEMM-based level 3 BLAS,  Beta version 0.1
+
+               Bo Kagstrom and Per Ling
+               Department of Computing Science
+               Umea University
+               S-901 87 Umea, Sweden
+
+	 from netlib.org, translated to C, and modified for matmul.m4.  */
+
+      const GFC_INTEGER_2 *a, *b;
+      GFC_INTEGER_2 *c;
+      const index_type m = xcount, n = ycount, k = count;
+
+      /* System generated locals */
+      index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+		 i1, i2, i3, i4, i5, i6;
+
+      /* Local variables */
+      GFC_INTEGER_2 t1[65536], /* was [256][256] */
+		 f11, f12, f21, f22, f31, f32, f41, f42,
+		 f13, f14, f23, f24, f33, f34, f43, f44;
+      index_type i, j, l, ii, jj, ll;
+      index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+      a = abase;
+      b = bbase;
+      c = retarray->base_addr;
+
+      /* Parameter adjustments */
+      c_dim1 = rystride;
+      c_offset = 1 + c_dim1;
+      c -= c_offset;
+      a_dim1 = aystride;
+      a_offset = 1 + a_dim1;
+      a -= a_offset;
+      b_dim1 = bystride;
+      b_offset = 1 + b_dim1;
+      b -= b_offset;
+
+      /* Early exit if possible */
+      if (m == 0 || n == 0 || k == 0)
+	return;
+
+      /* Empty c first.  */
+      for (j=1; j<=n; j++)
+	for (i=1; i<=m; i++)
+	  c[i + j * c_dim1] = (GFC_INTEGER_2)0;
+
+      /* Start turning the crank. */
+      i1 = n;
+      for (jj = 1; jj <= i1; jj += 512)
 	{
-	  bbase_y = bbase + y*bystride;
-	  dest_y = dest + y*rystride;
-	  for (n = 0; n < count; n++)
+	  /* Computing MIN */
+	  i2 = 512;
+	  i3 = n - jj + 1;
+	  jsec = min(i2,i3);
+	  ujsec = jsec - jsec % 4;
+	  i2 = k;
+	  for (ll = 1; ll <= i2; ll += 256)
 	    {
-	      abase_n = abase + n*aystride;
-	      bbase_yn = bbase_y[n];
-	      for (x = 0; x < xcount; x++)
+	      /* Computing MIN */
+	      i3 = 256;
+	      i4 = k - ll + 1;
+	      lsec = min(i3,i4);
+	      ulsec = lsec - lsec % 2;
+
+	      i3 = m;
+	      for (ii = 1; ii <= i3; ii += 256)
 		{
-		  dest_y[x] += abase_n[x] * bbase_yn;
+		  /* Computing MIN */
+		  i4 = 256;
+		  i5 = m - ii + 1;
+		  isec = min(i4,i5);
+		  uisec = isec - isec % 2;
+		  i4 = ll + ulsec - 1;
+		  for (l = ll; l <= i4; l += 2)
+		    {
+		      i5 = ii + uisec - 1;
+		      for (i = ii; i <= i5; i += 2)
+			{
+			  t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+					a[i + l * a_dim1];
+			  t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+					a[i + (l + 1) * a_dim1];
+			  t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+					a[i + 1 + l * a_dim1];
+			  t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+					a[i + 1 + (l + 1) * a_dim1];
+			}
+		      if (uisec < isec)
+			{
+			  t1[l - ll + 1 + (isec << 8) - 257] =
+				    a[ii + isec - 1 + l * a_dim1];
+			  t1[l - ll + 2 + (isec << 8) - 257] =
+				    a[ii + isec - 1 + (l + 1) * a_dim1];
+			}
+		    }
+		  if (ulsec < lsec)
+		    {
+		      i4 = ii + isec - 1;
+		      for (i = ii; i<= i4; ++i)
+			{
+			  t1[lsec + ((i - ii + 1) << 8) - 257] =
+				    a[i + (ll + lsec - 1) * a_dim1];
+			}
+		    }
+
+		  uisec = isec - isec % 4;
+		  i4 = jj + ujsec - 1;
+		  for (j = jj; j <= i4; j += 4)
+		    {
+		      i5 = ii + uisec - 1;
+		      for (i = ii; i <= i5; i += 4)
+			{
+			  f11 = c[i + j * c_dim1];
+			  f21 = c[i + 1 + j * c_dim1];
+			  f12 = c[i + (j + 1) * c_dim1];
+			  f22 = c[i + 1 + (j + 1) * c_dim1];
+			  f13 = c[i + (j + 2) * c_dim1];
+			  f23 = c[i + 1 + (j + 2) * c_dim1];
+			  f14 = c[i + (j + 3) * c_dim1];
+			  f24 = c[i + 1 + (j + 3) * c_dim1];
+			  f31 = c[i + 2 + j * c_dim1];
+			  f41 = c[i + 3 + j * c_dim1];
+			  f32 = c[i + 2 + (j + 1) * c_dim1];
+			  f42 = c[i + 3 + (j + 1) * c_dim1];
+			  f33 = c[i + 2 + (j + 2) * c_dim1];
+			  f43 = c[i + 3 + (j + 2) * c_dim1];
+			  f34 = c[i + 2 + (j + 3) * c_dim1];
+			  f44 = c[i + 3 + (j + 3) * c_dim1];
+			  i6 = ll + lsec - 1;
+			  for (l = ll; l <= i6; ++l)
+			    {
+			      f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			    }
+			  c[i + j * c_dim1] = f11;
+			  c[i + 1 + j * c_dim1] = f21;
+			  c[i + (j + 1) * c_dim1] = f12;
+			  c[i + 1 + (j + 1) * c_dim1] = f22;
+			  c[i + (j + 2) * c_dim1] = f13;
+			  c[i + 1 + (j + 2) * c_dim1] = f23;
+			  c[i + (j + 3) * c_dim1] = f14;
+			  c[i + 1 + (j + 3) * c_dim1] = f24;
+			  c[i + 2 + j * c_dim1] = f31;
+			  c[i + 3 + j * c_dim1] = f41;
+			  c[i + 2 + (j + 1) * c_dim1] = f32;
+			  c[i + 3 + (j + 1) * c_dim1] = f42;
+			  c[i + 2 + (j + 2) * c_dim1] = f33;
+			  c[i + 3 + (j + 2) * c_dim1] = f43;
+			  c[i + 2 + (j + 3) * c_dim1] = f34;
+			  c[i + 3 + (j + 3) * c_dim1] = f44;
+			}
+		      if (uisec < isec)
+			{
+			  i5 = ii + isec - 1;
+			  for (i = ii + uisec; i <= i5; ++i)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      f12 = c[i + (j + 1) * c_dim1];
+			      f13 = c[i + (j + 2) * c_dim1];
+			      f14 = c[i + (j + 3) * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 1) * b_dim1];
+				  f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 2) * b_dim1];
+				  f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 3) * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			      c[i + (j + 1) * c_dim1] = f12;
+			      c[i + (j + 2) * c_dim1] = f13;
+			      c[i + (j + 3) * c_dim1] = f14;
+			    }
+			}
+		    }
+		  if (ujsec < jsec)
+		    {
+		      i4 = jj + jsec - 1;
+		      for (j = jj + ujsec; j <= i4; ++j)
+			{
+			  i5 = ii + uisec - 1;
+			  for (i = ii; i <= i5; i += 4)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      f21 = c[i + 1 + j * c_dim1];
+			      f31 = c[i + 2 + j * c_dim1];
+			      f41 = c[i + 3 + j * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+					  257] * b[l + j * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			      c[i + 1 + j * c_dim1] = f21;
+			      c[i + 2 + j * c_dim1] = f31;
+			      c[i + 3 + j * c_dim1] = f41;
+			    }
+			  i5 = ii + isec - 1;
+			  for (i = ii + uisec; i <= i5; ++i)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			    }
+			}
+		    }
 		}
 	    }
 	}
+      return;
     }
   else if (rxstride == 1 && aystride == 1 && bxstride == 1)
     {
@@ -334,7 +567,9 @@ matmul_i2 (gfc_array_i2 * const restrict retarray,
 	for (n = 0; n < count; n++)
 	  for (x = 0; x < xcount; x++)
 	    /* dest[x,y] += a[x,n] * b[n,y] */
-	    dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
+	    dest[x*rxstride + y*rystride] +=
+					abase[x*axstride + n*aystride] *
+					bbase[n*bxstride + y*bystride];
     }
   else if (GFC_DESCRIPTOR_RANK (a) == 1)
     {
@@ -372,5 +607,4 @@ matmul_i2 (gfc_array_i2 * const restrict retarray,
 	}
     }
 }
-
 #endif
diff --git a/libgfortran/generated/matmul_i4.c b/libgfortran/generated/matmul_i4.c
index 2dc526d9b9c2f604ea6305d7e5f652eee0dd1662..aee8e4d55d50bcb90c49819c8991b1f42eafad12 100644
--- a/libgfortran/generated/matmul_i4.c
+++ b/libgfortran/generated/matmul_i4.c
@@ -32,7 +32,7 @@ see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
 #if defined (HAVE_GFC_INTEGER_4)
 
 /* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
-   passed to us by the front-end, in which case we'll call it for large
+   passed to us by the front-end, in which case we call it for large
    matrices.  */
 
 typedef void (*blas_call)(const char *, const char *, const int *, const int *,
@@ -99,7 +99,7 @@ matmul_i4 (gfc_array_i4 * const restrict retarray,
 
    o One-dimensional argument B is implicitly treated as a column matrix
      dimensioned [count, 1], so ycount=1.
-  */
+*/
 
   if (retarray->base_addr == NULL)
     {
@@ -127,47 +127,47 @@ matmul_i4 (gfc_array_i4 * const restrict retarray,
 	= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_4));
       retarray->offset = 0;
     }
-    else if (unlikely (compile_options.bounds_check))
-      {
-	index_type ret_extent, arg_extent;
-
-	if (GFC_DESCRIPTOR_RANK (a) == 1)
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic: is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-	  }
-	else if (GFC_DESCRIPTOR_RANK (b) == 1)
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic: is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);	    
-	  }
-	else
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic for dimension 1:"
-			     " is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic for dimension 2:"
-			     " is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-	  }
-      }
+  else if (unlikely (compile_options.bounds_check))
+    {
+      index_type ret_extent, arg_extent;
+
+      if (GFC_DESCRIPTOR_RANK (a) == 1)
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic: is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+      else if (GFC_DESCRIPTOR_RANK (b) == 1)
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic: is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+      else
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic for dimension 1:"
+			   " is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic for dimension 2:"
+			   " is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+    }
 
 
   if (GFC_DESCRIPTOR_RANK (retarray) == 1)
@@ -230,61 +230,294 @@ matmul_i4 (gfc_array_i4 * const restrict retarray,
   bbase = b->base_addr;
   dest = retarray->base_addr;
 
-
-  /* Now that everything is set up, we're performing the multiplication
+  /* Now that everything is set up, we perform the multiplication
      itself.  */
 
 #define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
 
   if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
       && (bxstride == 1 || bystride == 1)
       && (((float) xcount) * ((float) ycount) * ((float) count)
           > POW3(blas_limit)))
-  {
-    const int m = xcount, n = ycount, k = count, ldc = rystride;
-    const GFC_INTEGER_4 one = 1, zero = 0;
-    const int lda = (axstride == 1) ? aystride : axstride,
-              ldb = (bxstride == 1) ? bystride : bxstride;
-
-    if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
-      {
-        assert (gemm != NULL);
-        gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k,
-              &one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1);
-        return;
-      }
-  }
-
-  if (rxstride == 1 && axstride == 1 && bxstride == 1)
     {
-      const GFC_INTEGER_4 * restrict bbase_y;
-      GFC_INTEGER_4 * restrict dest_y;
-      const GFC_INTEGER_4 * restrict abase_n;
-      GFC_INTEGER_4 bbase_yn;
+      const int m = xcount, n = ycount, k = count, ldc = rystride;
+      const GFC_INTEGER_4 one = 1, zero = 0;
+      const int lda = (axstride == 1) ? aystride : axstride,
+		ldb = (bxstride == 1) ? bystride : bxstride;
 
-      if (rystride == xcount)
-	memset (dest, 0, (sizeof (GFC_INTEGER_4) * xcount * ycount));
-      else
+      if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
 	{
-	  for (y = 0; y < ycount; y++)
-	    for (x = 0; x < xcount; x++)
-	      dest[x + y*rystride] = (GFC_INTEGER_4)0;
+	  assert (gemm != NULL);
+	  gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+		&n, &k,	&one, abase, &lda, bbase, &ldb, &zero, dest,
+		&ldc, 1, 1);
+	  return;
 	}
+    }
 
-      for (y = 0; y < ycount; y++)
+  if (rxstride == 1 && axstride == 1 && bxstride == 1)
+    {
+      /* This block of code implements a tuned matmul, derived from
+         Superscalar GEMM-based level 3 BLAS,  Beta version 0.1
+
+               Bo Kagstrom and Per Ling
+               Department of Computing Science
+               Umea University
+               S-901 87 Umea, Sweden
+
+	 from netlib.org, translated to C, and modified for matmul.m4.  */
+
+      const GFC_INTEGER_4 *a, *b;
+      GFC_INTEGER_4 *c;
+      const index_type m = xcount, n = ycount, k = count;
+
+      /* System generated locals */
+      index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+		 i1, i2, i3, i4, i5, i6;
+
+      /* Local variables */
+      GFC_INTEGER_4 t1[65536], /* was [256][256] */
+		 f11, f12, f21, f22, f31, f32, f41, f42,
+		 f13, f14, f23, f24, f33, f34, f43, f44;
+      index_type i, j, l, ii, jj, ll;
+      index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+      a = abase;
+      b = bbase;
+      c = retarray->base_addr;
+
+      /* Parameter adjustments */
+      c_dim1 = rystride;
+      c_offset = 1 + c_dim1;
+      c -= c_offset;
+      a_dim1 = aystride;
+      a_offset = 1 + a_dim1;
+      a -= a_offset;
+      b_dim1 = bystride;
+      b_offset = 1 + b_dim1;
+      b -= b_offset;
+
+      /* Early exit if possible */
+      if (m == 0 || n == 0 || k == 0)
+	return;
+
+      /* Empty c first.  */
+      for (j=1; j<=n; j++)
+	for (i=1; i<=m; i++)
+	  c[i + j * c_dim1] = (GFC_INTEGER_4)0;
+
+      /* Start turning the crank. */
+      i1 = n;
+      for (jj = 1; jj <= i1; jj += 512)
 	{
-	  bbase_y = bbase + y*bystride;
-	  dest_y = dest + y*rystride;
-	  for (n = 0; n < count; n++)
+	  /* Computing MIN */
+	  i2 = 512;
+	  i3 = n - jj + 1;
+	  jsec = min(i2,i3);
+	  ujsec = jsec - jsec % 4;
+	  i2 = k;
+	  for (ll = 1; ll <= i2; ll += 256)
 	    {
-	      abase_n = abase + n*aystride;
-	      bbase_yn = bbase_y[n];
-	      for (x = 0; x < xcount; x++)
+	      /* Computing MIN */
+	      i3 = 256;
+	      i4 = k - ll + 1;
+	      lsec = min(i3,i4);
+	      ulsec = lsec - lsec % 2;
+
+	      i3 = m;
+	      for (ii = 1; ii <= i3; ii += 256)
 		{
-		  dest_y[x] += abase_n[x] * bbase_yn;
+		  /* Computing MIN */
+		  i4 = 256;
+		  i5 = m - ii + 1;
+		  isec = min(i4,i5);
+		  uisec = isec - isec % 2;
+		  i4 = ll + ulsec - 1;
+		  for (l = ll; l <= i4; l += 2)
+		    {
+		      i5 = ii + uisec - 1;
+		      for (i = ii; i <= i5; i += 2)
+			{
+			  t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+					a[i + l * a_dim1];
+			  t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+					a[i + (l + 1) * a_dim1];
+			  t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+					a[i + 1 + l * a_dim1];
+			  t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+					a[i + 1 + (l + 1) * a_dim1];
+			}
+		      if (uisec < isec)
+			{
+			  t1[l - ll + 1 + (isec << 8) - 257] =
+				    a[ii + isec - 1 + l * a_dim1];
+			  t1[l - ll + 2 + (isec << 8) - 257] =
+				    a[ii + isec - 1 + (l + 1) * a_dim1];
+			}
+		    }
+		  if (ulsec < lsec)
+		    {
+		      i4 = ii + isec - 1;
+		      for (i = ii; i<= i4; ++i)
+			{
+			  t1[lsec + ((i - ii + 1) << 8) - 257] =
+				    a[i + (ll + lsec - 1) * a_dim1];
+			}
+		    }
+
+		  uisec = isec - isec % 4;
+		  i4 = jj + ujsec - 1;
+		  for (j = jj; j <= i4; j += 4)
+		    {
+		      i5 = ii + uisec - 1;
+		      for (i = ii; i <= i5; i += 4)
+			{
+			  f11 = c[i + j * c_dim1];
+			  f21 = c[i + 1 + j * c_dim1];
+			  f12 = c[i + (j + 1) * c_dim1];
+			  f22 = c[i + 1 + (j + 1) * c_dim1];
+			  f13 = c[i + (j + 2) * c_dim1];
+			  f23 = c[i + 1 + (j + 2) * c_dim1];
+			  f14 = c[i + (j + 3) * c_dim1];
+			  f24 = c[i + 1 + (j + 3) * c_dim1];
+			  f31 = c[i + 2 + j * c_dim1];
+			  f41 = c[i + 3 + j * c_dim1];
+			  f32 = c[i + 2 + (j + 1) * c_dim1];
+			  f42 = c[i + 3 + (j + 1) * c_dim1];
+			  f33 = c[i + 2 + (j + 2) * c_dim1];
+			  f43 = c[i + 3 + (j + 2) * c_dim1];
+			  f34 = c[i + 2 + (j + 3) * c_dim1];
+			  f44 = c[i + 3 + (j + 3) * c_dim1];
+			  i6 = ll + lsec - 1;
+			  for (l = ll; l <= i6; ++l)
+			    {
+			      f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			    }
+			  c[i + j * c_dim1] = f11;
+			  c[i + 1 + j * c_dim1] = f21;
+			  c[i + (j + 1) * c_dim1] = f12;
+			  c[i + 1 + (j + 1) * c_dim1] = f22;
+			  c[i + (j + 2) * c_dim1] = f13;
+			  c[i + 1 + (j + 2) * c_dim1] = f23;
+			  c[i + (j + 3) * c_dim1] = f14;
+			  c[i + 1 + (j + 3) * c_dim1] = f24;
+			  c[i + 2 + j * c_dim1] = f31;
+			  c[i + 3 + j * c_dim1] = f41;
+			  c[i + 2 + (j + 1) * c_dim1] = f32;
+			  c[i + 3 + (j + 1) * c_dim1] = f42;
+			  c[i + 2 + (j + 2) * c_dim1] = f33;
+			  c[i + 3 + (j + 2) * c_dim1] = f43;
+			  c[i + 2 + (j + 3) * c_dim1] = f34;
+			  c[i + 3 + (j + 3) * c_dim1] = f44;
+			}
+		      if (uisec < isec)
+			{
+			  i5 = ii + isec - 1;
+			  for (i = ii + uisec; i <= i5; ++i)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      f12 = c[i + (j + 1) * c_dim1];
+			      f13 = c[i + (j + 2) * c_dim1];
+			      f14 = c[i + (j + 3) * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 1) * b_dim1];
+				  f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 2) * b_dim1];
+				  f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 3) * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			      c[i + (j + 1) * c_dim1] = f12;
+			      c[i + (j + 2) * c_dim1] = f13;
+			      c[i + (j + 3) * c_dim1] = f14;
+			    }
+			}
+		    }
+		  if (ujsec < jsec)
+		    {
+		      i4 = jj + jsec - 1;
+		      for (j = jj + ujsec; j <= i4; ++j)
+			{
+			  i5 = ii + uisec - 1;
+			  for (i = ii; i <= i5; i += 4)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      f21 = c[i + 1 + j * c_dim1];
+			      f31 = c[i + 2 + j * c_dim1];
+			      f41 = c[i + 3 + j * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+					  257] * b[l + j * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			      c[i + 1 + j * c_dim1] = f21;
+			      c[i + 2 + j * c_dim1] = f31;
+			      c[i + 3 + j * c_dim1] = f41;
+			    }
+			  i5 = ii + isec - 1;
+			  for (i = ii + uisec; i <= i5; ++i)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			    }
+			}
+		    }
 		}
 	    }
 	}
+      return;
     }
   else if (rxstride == 1 && aystride == 1 && bxstride == 1)
     {
@@ -334,7 +567,9 @@ matmul_i4 (gfc_array_i4 * const restrict retarray,
 	for (n = 0; n < count; n++)
 	  for (x = 0; x < xcount; x++)
 	    /* dest[x,y] += a[x,n] * b[n,y] */
-	    dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
+	    dest[x*rxstride + y*rystride] +=
+					abase[x*axstride + n*aystride] *
+					bbase[n*bxstride + y*bystride];
     }
   else if (GFC_DESCRIPTOR_RANK (a) == 1)
     {
@@ -372,5 +607,4 @@ matmul_i4 (gfc_array_i4 * const restrict retarray,
 	}
     }
 }
-
 #endif
diff --git a/libgfortran/generated/matmul_i8.c b/libgfortran/generated/matmul_i8.c
index 0ff728d90e91c1075ffc09f605447d366f2db629..902b284075137c011cfa2ac5473b1c88c9096e0f 100644
--- a/libgfortran/generated/matmul_i8.c
+++ b/libgfortran/generated/matmul_i8.c
@@ -32,7 +32,7 @@ see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
 #if defined (HAVE_GFC_INTEGER_8)
 
 /* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
-   passed to us by the front-end, in which case we'll call it for large
+   passed to us by the front-end, in which case we call it for large
    matrices.  */
 
 typedef void (*blas_call)(const char *, const char *, const int *, const int *,
@@ -99,7 +99,7 @@ matmul_i8 (gfc_array_i8 * const restrict retarray,
 
    o One-dimensional argument B is implicitly treated as a column matrix
      dimensioned [count, 1], so ycount=1.
-  */
+*/
 
   if (retarray->base_addr == NULL)
     {
@@ -127,47 +127,47 @@ matmul_i8 (gfc_array_i8 * const restrict retarray,
 	= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_8));
       retarray->offset = 0;
     }
-    else if (unlikely (compile_options.bounds_check))
-      {
-	index_type ret_extent, arg_extent;
-
-	if (GFC_DESCRIPTOR_RANK (a) == 1)
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic: is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-	  }
-	else if (GFC_DESCRIPTOR_RANK (b) == 1)
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic: is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);	    
-	  }
-	else
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic for dimension 1:"
-			     " is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic for dimension 2:"
-			     " is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-	  }
-      }
+  else if (unlikely (compile_options.bounds_check))
+    {
+      index_type ret_extent, arg_extent;
+
+      if (GFC_DESCRIPTOR_RANK (a) == 1)
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic: is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+      else if (GFC_DESCRIPTOR_RANK (b) == 1)
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic: is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+      else
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic for dimension 1:"
+			   " is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic for dimension 2:"
+			   " is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+    }
 
 
   if (GFC_DESCRIPTOR_RANK (retarray) == 1)
@@ -230,61 +230,294 @@ matmul_i8 (gfc_array_i8 * const restrict retarray,
   bbase = b->base_addr;
   dest = retarray->base_addr;
 
-
-  /* Now that everything is set up, we're performing the multiplication
+  /* Now that everything is set up, we perform the multiplication
      itself.  */
 
 #define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
 
   if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
       && (bxstride == 1 || bystride == 1)
       && (((float) xcount) * ((float) ycount) * ((float) count)
           > POW3(blas_limit)))
-  {
-    const int m = xcount, n = ycount, k = count, ldc = rystride;
-    const GFC_INTEGER_8 one = 1, zero = 0;
-    const int lda = (axstride == 1) ? aystride : axstride,
-              ldb = (bxstride == 1) ? bystride : bxstride;
-
-    if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
-      {
-        assert (gemm != NULL);
-        gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k,
-              &one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1);
-        return;
-      }
-  }
-
-  if (rxstride == 1 && axstride == 1 && bxstride == 1)
     {
-      const GFC_INTEGER_8 * restrict bbase_y;
-      GFC_INTEGER_8 * restrict dest_y;
-      const GFC_INTEGER_8 * restrict abase_n;
-      GFC_INTEGER_8 bbase_yn;
+      const int m = xcount, n = ycount, k = count, ldc = rystride;
+      const GFC_INTEGER_8 one = 1, zero = 0;
+      const int lda = (axstride == 1) ? aystride : axstride,
+		ldb = (bxstride == 1) ? bystride : bxstride;
 
-      if (rystride == xcount)
-	memset (dest, 0, (sizeof (GFC_INTEGER_8) * xcount * ycount));
-      else
+      if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
 	{
-	  for (y = 0; y < ycount; y++)
-	    for (x = 0; x < xcount; x++)
-	      dest[x + y*rystride] = (GFC_INTEGER_8)0;
+	  assert (gemm != NULL);
+	  gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+		&n, &k,	&one, abase, &lda, bbase, &ldb, &zero, dest,
+		&ldc, 1, 1);
+	  return;
 	}
+    }
 
-      for (y = 0; y < ycount; y++)
+  if (rxstride == 1 && axstride == 1 && bxstride == 1)
+    {
+      /* This block of code implements a tuned matmul, derived from
+         Superscalar GEMM-based level 3 BLAS,  Beta version 0.1
+
+               Bo Kagstrom and Per Ling
+               Department of Computing Science
+               Umea University
+               S-901 87 Umea, Sweden
+
+	 from netlib.org, translated to C, and modified for matmul.m4.  */
+
+      const GFC_INTEGER_8 *a, *b;
+      GFC_INTEGER_8 *c;
+      const index_type m = xcount, n = ycount, k = count;
+
+      /* System generated locals */
+      index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+		 i1, i2, i3, i4, i5, i6;
+
+      /* Local variables */
+      GFC_INTEGER_8 t1[65536], /* was [256][256] */
+		 f11, f12, f21, f22, f31, f32, f41, f42,
+		 f13, f14, f23, f24, f33, f34, f43, f44;
+      index_type i, j, l, ii, jj, ll;
+      index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+      a = abase;
+      b = bbase;
+      c = retarray->base_addr;
+
+      /* Parameter adjustments */
+      c_dim1 = rystride;
+      c_offset = 1 + c_dim1;
+      c -= c_offset;
+      a_dim1 = aystride;
+      a_offset = 1 + a_dim1;
+      a -= a_offset;
+      b_dim1 = bystride;
+      b_offset = 1 + b_dim1;
+      b -= b_offset;
+
+      /* Early exit if possible */
+      if (m == 0 || n == 0 || k == 0)
+	return;
+
+      /* Empty c first.  */
+      for (j=1; j<=n; j++)
+	for (i=1; i<=m; i++)
+	  c[i + j * c_dim1] = (GFC_INTEGER_8)0;
+
+      /* Start turning the crank. */
+      i1 = n;
+      for (jj = 1; jj <= i1; jj += 512)
 	{
-	  bbase_y = bbase + y*bystride;
-	  dest_y = dest + y*rystride;
-	  for (n = 0; n < count; n++)
+	  /* Computing MIN */
+	  i2 = 512;
+	  i3 = n - jj + 1;
+	  jsec = min(i2,i3);
+	  ujsec = jsec - jsec % 4;
+	  i2 = k;
+	  for (ll = 1; ll <= i2; ll += 256)
 	    {
-	      abase_n = abase + n*aystride;
-	      bbase_yn = bbase_y[n];
-	      for (x = 0; x < xcount; x++)
+	      /* Computing MIN */
+	      i3 = 256;
+	      i4 = k - ll + 1;
+	      lsec = min(i3,i4);
+	      ulsec = lsec - lsec % 2;
+
+	      i3 = m;
+	      for (ii = 1; ii <= i3; ii += 256)
 		{
-		  dest_y[x] += abase_n[x] * bbase_yn;
+		  /* Computing MIN */
+		  i4 = 256;
+		  i5 = m - ii + 1;
+		  isec = min(i4,i5);
+		  uisec = isec - isec % 2;
+		  i4 = ll + ulsec - 1;
+		  for (l = ll; l <= i4; l += 2)
+		    {
+		      i5 = ii + uisec - 1;
+		      for (i = ii; i <= i5; i += 2)
+			{
+			  t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+					a[i + l * a_dim1];
+			  t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+					a[i + (l + 1) * a_dim1];
+			  t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+					a[i + 1 + l * a_dim1];
+			  t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+					a[i + 1 + (l + 1) * a_dim1];
+			}
+		      if (uisec < isec)
+			{
+			  t1[l - ll + 1 + (isec << 8) - 257] =
+				    a[ii + isec - 1 + l * a_dim1];
+			  t1[l - ll + 2 + (isec << 8) - 257] =
+				    a[ii + isec - 1 + (l + 1) * a_dim1];
+			}
+		    }
+		  if (ulsec < lsec)
+		    {
+		      i4 = ii + isec - 1;
+		      for (i = ii; i<= i4; ++i)
+			{
+			  t1[lsec + ((i - ii + 1) << 8) - 257] =
+				    a[i + (ll + lsec - 1) * a_dim1];
+			}
+		    }
+
+		  uisec = isec - isec % 4;
+		  i4 = jj + ujsec - 1;
+		  for (j = jj; j <= i4; j += 4)
+		    {
+		      i5 = ii + uisec - 1;
+		      for (i = ii; i <= i5; i += 4)
+			{
+			  f11 = c[i + j * c_dim1];
+			  f21 = c[i + 1 + j * c_dim1];
+			  f12 = c[i + (j + 1) * c_dim1];
+			  f22 = c[i + 1 + (j + 1) * c_dim1];
+			  f13 = c[i + (j + 2) * c_dim1];
+			  f23 = c[i + 1 + (j + 2) * c_dim1];
+			  f14 = c[i + (j + 3) * c_dim1];
+			  f24 = c[i + 1 + (j + 3) * c_dim1];
+			  f31 = c[i + 2 + j * c_dim1];
+			  f41 = c[i + 3 + j * c_dim1];
+			  f32 = c[i + 2 + (j + 1) * c_dim1];
+			  f42 = c[i + 3 + (j + 1) * c_dim1];
+			  f33 = c[i + 2 + (j + 2) * c_dim1];
+			  f43 = c[i + 3 + (j + 2) * c_dim1];
+			  f34 = c[i + 2 + (j + 3) * c_dim1];
+			  f44 = c[i + 3 + (j + 3) * c_dim1];
+			  i6 = ll + lsec - 1;
+			  for (l = ll; l <= i6; ++l)
+			    {
+			      f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			    }
+			  c[i + j * c_dim1] = f11;
+			  c[i + 1 + j * c_dim1] = f21;
+			  c[i + (j + 1) * c_dim1] = f12;
+			  c[i + 1 + (j + 1) * c_dim1] = f22;
+			  c[i + (j + 2) * c_dim1] = f13;
+			  c[i + 1 + (j + 2) * c_dim1] = f23;
+			  c[i + (j + 3) * c_dim1] = f14;
+			  c[i + 1 + (j + 3) * c_dim1] = f24;
+			  c[i + 2 + j * c_dim1] = f31;
+			  c[i + 3 + j * c_dim1] = f41;
+			  c[i + 2 + (j + 1) * c_dim1] = f32;
+			  c[i + 3 + (j + 1) * c_dim1] = f42;
+			  c[i + 2 + (j + 2) * c_dim1] = f33;
+			  c[i + 3 + (j + 2) * c_dim1] = f43;
+			  c[i + 2 + (j + 3) * c_dim1] = f34;
+			  c[i + 3 + (j + 3) * c_dim1] = f44;
+			}
+		      if (uisec < isec)
+			{
+			  i5 = ii + isec - 1;
+			  for (i = ii + uisec; i <= i5; ++i)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      f12 = c[i + (j + 1) * c_dim1];
+			      f13 = c[i + (j + 2) * c_dim1];
+			      f14 = c[i + (j + 3) * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 1) * b_dim1];
+				  f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 2) * b_dim1];
+				  f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 3) * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			      c[i + (j + 1) * c_dim1] = f12;
+			      c[i + (j + 2) * c_dim1] = f13;
+			      c[i + (j + 3) * c_dim1] = f14;
+			    }
+			}
+		    }
+		  if (ujsec < jsec)
+		    {
+		      i4 = jj + jsec - 1;
+		      for (j = jj + ujsec; j <= i4; ++j)
+			{
+			  i5 = ii + uisec - 1;
+			  for (i = ii; i <= i5; i += 4)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      f21 = c[i + 1 + j * c_dim1];
+			      f31 = c[i + 2 + j * c_dim1];
+			      f41 = c[i + 3 + j * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+					  257] * b[l + j * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			      c[i + 1 + j * c_dim1] = f21;
+			      c[i + 2 + j * c_dim1] = f31;
+			      c[i + 3 + j * c_dim1] = f41;
+			    }
+			  i5 = ii + isec - 1;
+			  for (i = ii + uisec; i <= i5; ++i)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			    }
+			}
+		    }
 		}
 	    }
 	}
+      return;
     }
   else if (rxstride == 1 && aystride == 1 && bxstride == 1)
     {
@@ -334,7 +567,9 @@ matmul_i8 (gfc_array_i8 * const restrict retarray,
 	for (n = 0; n < count; n++)
 	  for (x = 0; x < xcount; x++)
 	    /* dest[x,y] += a[x,n] * b[n,y] */
-	    dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
+	    dest[x*rxstride + y*rystride] +=
+					abase[x*axstride + n*aystride] *
+					bbase[n*bxstride + y*bystride];
     }
   else if (GFC_DESCRIPTOR_RANK (a) == 1)
     {
@@ -372,5 +607,4 @@ matmul_i8 (gfc_array_i8 * const restrict retarray,
 	}
     }
 }
-
 #endif
diff --git a/libgfortran/generated/matmul_r10.c b/libgfortran/generated/matmul_r10.c
index a34856f010f367e80d5ebd66ffb159120ee3305c..8bb1e6297bb35b871417b86da6a85aa743e01a5a 100644
--- a/libgfortran/generated/matmul_r10.c
+++ b/libgfortran/generated/matmul_r10.c
@@ -32,7 +32,7 @@ see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
 #if defined (HAVE_GFC_REAL_10)
 
 /* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
-   passed to us by the front-end, in which case we'll call it for large
+   passed to us by the front-end, in which case we call it for large
    matrices.  */
 
 typedef void (*blas_call)(const char *, const char *, const int *, const int *,
@@ -99,7 +99,7 @@ matmul_r10 (gfc_array_r10 * const restrict retarray,
 
    o One-dimensional argument B is implicitly treated as a column matrix
      dimensioned [count, 1], so ycount=1.
-  */
+*/
 
   if (retarray->base_addr == NULL)
     {
@@ -127,47 +127,47 @@ matmul_r10 (gfc_array_r10 * const restrict retarray,
 	= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_REAL_10));
       retarray->offset = 0;
     }
-    else if (unlikely (compile_options.bounds_check))
-      {
-	index_type ret_extent, arg_extent;
-
-	if (GFC_DESCRIPTOR_RANK (a) == 1)
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic: is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-	  }
-	else if (GFC_DESCRIPTOR_RANK (b) == 1)
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic: is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);	    
-	  }
-	else
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic for dimension 1:"
-			     " is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic for dimension 2:"
-			     " is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-	  }
-      }
+  else if (unlikely (compile_options.bounds_check))
+    {
+      index_type ret_extent, arg_extent;
+
+      if (GFC_DESCRIPTOR_RANK (a) == 1)
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic: is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+      else if (GFC_DESCRIPTOR_RANK (b) == 1)
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic: is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+      else
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic for dimension 1:"
+			   " is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic for dimension 2:"
+			   " is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+    }
 
 
   if (GFC_DESCRIPTOR_RANK (retarray) == 1)
@@ -230,61 +230,294 @@ matmul_r10 (gfc_array_r10 * const restrict retarray,
   bbase = b->base_addr;
   dest = retarray->base_addr;
 
-
-  /* Now that everything is set up, we're performing the multiplication
+  /* Now that everything is set up, we perform the multiplication
      itself.  */
 
 #define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
 
   if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
       && (bxstride == 1 || bystride == 1)
       && (((float) xcount) * ((float) ycount) * ((float) count)
           > POW3(blas_limit)))
-  {
-    const int m = xcount, n = ycount, k = count, ldc = rystride;
-    const GFC_REAL_10 one = 1, zero = 0;
-    const int lda = (axstride == 1) ? aystride : axstride,
-              ldb = (bxstride == 1) ? bystride : bxstride;
-
-    if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
-      {
-        assert (gemm != NULL);
-        gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k,
-              &one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1);
-        return;
-      }
-  }
-
-  if (rxstride == 1 && axstride == 1 && bxstride == 1)
     {
-      const GFC_REAL_10 * restrict bbase_y;
-      GFC_REAL_10 * restrict dest_y;
-      const GFC_REAL_10 * restrict abase_n;
-      GFC_REAL_10 bbase_yn;
+      const int m = xcount, n = ycount, k = count, ldc = rystride;
+      const GFC_REAL_10 one = 1, zero = 0;
+      const int lda = (axstride == 1) ? aystride : axstride,
+		ldb = (bxstride == 1) ? bystride : bxstride;
 
-      if (rystride == xcount)
-	memset (dest, 0, (sizeof (GFC_REAL_10) * xcount * ycount));
-      else
+      if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
 	{
-	  for (y = 0; y < ycount; y++)
-	    for (x = 0; x < xcount; x++)
-	      dest[x + y*rystride] = (GFC_REAL_10)0;
+	  assert (gemm != NULL);
+	  gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+		&n, &k,	&one, abase, &lda, bbase, &ldb, &zero, dest,
+		&ldc, 1, 1);
+	  return;
 	}
+    }
 
-      for (y = 0; y < ycount; y++)
+  if (rxstride == 1 && axstride == 1 && bxstride == 1)
+    {
+      /* This block of code implements a tuned matmul, derived from
+         Superscalar GEMM-based level 3 BLAS,  Beta version 0.1
+
+               Bo Kagstrom and Per Ling
+               Department of Computing Science
+               Umea University
+               S-901 87 Umea, Sweden
+
+	 from netlib.org, translated to C, and modified for matmul.m4.  */
+
+      const GFC_REAL_10 *a, *b;
+      GFC_REAL_10 *c;
+      const index_type m = xcount, n = ycount, k = count;
+
+      /* System generated locals */
+      index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+		 i1, i2, i3, i4, i5, i6;
+
+      /* Local variables */
+      GFC_REAL_10 t1[65536], /* was [256][256] */
+		 f11, f12, f21, f22, f31, f32, f41, f42,
+		 f13, f14, f23, f24, f33, f34, f43, f44;
+      index_type i, j, l, ii, jj, ll;
+      index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+      a = abase;
+      b = bbase;
+      c = retarray->base_addr;
+
+      /* Parameter adjustments */
+      c_dim1 = rystride;
+      c_offset = 1 + c_dim1;
+      c -= c_offset;
+      a_dim1 = aystride;
+      a_offset = 1 + a_dim1;
+      a -= a_offset;
+      b_dim1 = bystride;
+      b_offset = 1 + b_dim1;
+      b -= b_offset;
+
+      /* Early exit if possible */
+      if (m == 0 || n == 0 || k == 0)
+	return;
+
+      /* Empty c first.  */
+      for (j=1; j<=n; j++)
+	for (i=1; i<=m; i++)
+	  c[i + j * c_dim1] = (GFC_REAL_10)0;
+
+      /* Start turning the crank. */
+      i1 = n;
+      for (jj = 1; jj <= i1; jj += 512)
 	{
-	  bbase_y = bbase + y*bystride;
-	  dest_y = dest + y*rystride;
-	  for (n = 0; n < count; n++)
+	  /* Computing MIN */
+	  i2 = 512;
+	  i3 = n - jj + 1;
+	  jsec = min(i2,i3);
+	  ujsec = jsec - jsec % 4;
+	  i2 = k;
+	  for (ll = 1; ll <= i2; ll += 256)
 	    {
-	      abase_n = abase + n*aystride;
-	      bbase_yn = bbase_y[n];
-	      for (x = 0; x < xcount; x++)
+	      /* Computing MIN */
+	      i3 = 256;
+	      i4 = k - ll + 1;
+	      lsec = min(i3,i4);
+	      ulsec = lsec - lsec % 2;
+
+	      i3 = m;
+	      for (ii = 1; ii <= i3; ii += 256)
 		{
-		  dest_y[x] += abase_n[x] * bbase_yn;
+		  /* Computing MIN */
+		  i4 = 256;
+		  i5 = m - ii + 1;
+		  isec = min(i4,i5);
+		  uisec = isec - isec % 2;
+		  i4 = ll + ulsec - 1;
+		  for (l = ll; l <= i4; l += 2)
+		    {
+		      i5 = ii + uisec - 1;
+		      for (i = ii; i <= i5; i += 2)
+			{
+			  t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+					a[i + l * a_dim1];
+			  t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+					a[i + (l + 1) * a_dim1];
+			  t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+					a[i + 1 + l * a_dim1];
+			  t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+					a[i + 1 + (l + 1) * a_dim1];
+			}
+		      if (uisec < isec)
+			{
+			  t1[l - ll + 1 + (isec << 8) - 257] =
+				    a[ii + isec - 1 + l * a_dim1];
+			  t1[l - ll + 2 + (isec << 8) - 257] =
+				    a[ii + isec - 1 + (l + 1) * a_dim1];
+			}
+		    }
+		  if (ulsec < lsec)
+		    {
+		      i4 = ii + isec - 1;
+		      for (i = ii; i<= i4; ++i)
+			{
+			  t1[lsec + ((i - ii + 1) << 8) - 257] =
+				    a[i + (ll + lsec - 1) * a_dim1];
+			}
+		    }
+
+		  uisec = isec - isec % 4;
+		  i4 = jj + ujsec - 1;
+		  for (j = jj; j <= i4; j += 4)
+		    {
+		      i5 = ii + uisec - 1;
+		      for (i = ii; i <= i5; i += 4)
+			{
+			  f11 = c[i + j * c_dim1];
+			  f21 = c[i + 1 + j * c_dim1];
+			  f12 = c[i + (j + 1) * c_dim1];
+			  f22 = c[i + 1 + (j + 1) * c_dim1];
+			  f13 = c[i + (j + 2) * c_dim1];
+			  f23 = c[i + 1 + (j + 2) * c_dim1];
+			  f14 = c[i + (j + 3) * c_dim1];
+			  f24 = c[i + 1 + (j + 3) * c_dim1];
+			  f31 = c[i + 2 + j * c_dim1];
+			  f41 = c[i + 3 + j * c_dim1];
+			  f32 = c[i + 2 + (j + 1) * c_dim1];
+			  f42 = c[i + 3 + (j + 1) * c_dim1];
+			  f33 = c[i + 2 + (j + 2) * c_dim1];
+			  f43 = c[i + 3 + (j + 2) * c_dim1];
+			  f34 = c[i + 2 + (j + 3) * c_dim1];
+			  f44 = c[i + 3 + (j + 3) * c_dim1];
+			  i6 = ll + lsec - 1;
+			  for (l = ll; l <= i6; ++l)
+			    {
+			      f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			    }
+			  c[i + j * c_dim1] = f11;
+			  c[i + 1 + j * c_dim1] = f21;
+			  c[i + (j + 1) * c_dim1] = f12;
+			  c[i + 1 + (j + 1) * c_dim1] = f22;
+			  c[i + (j + 2) * c_dim1] = f13;
+			  c[i + 1 + (j + 2) * c_dim1] = f23;
+			  c[i + (j + 3) * c_dim1] = f14;
+			  c[i + 1 + (j + 3) * c_dim1] = f24;
+			  c[i + 2 + j * c_dim1] = f31;
+			  c[i + 3 + j * c_dim1] = f41;
+			  c[i + 2 + (j + 1) * c_dim1] = f32;
+			  c[i + 3 + (j + 1) * c_dim1] = f42;
+			  c[i + 2 + (j + 2) * c_dim1] = f33;
+			  c[i + 3 + (j + 2) * c_dim1] = f43;
+			  c[i + 2 + (j + 3) * c_dim1] = f34;
+			  c[i + 3 + (j + 3) * c_dim1] = f44;
+			}
+		      if (uisec < isec)
+			{
+			  i5 = ii + isec - 1;
+			  for (i = ii + uisec; i <= i5; ++i)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      f12 = c[i + (j + 1) * c_dim1];
+			      f13 = c[i + (j + 2) * c_dim1];
+			      f14 = c[i + (j + 3) * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 1) * b_dim1];
+				  f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 2) * b_dim1];
+				  f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 3) * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			      c[i + (j + 1) * c_dim1] = f12;
+			      c[i + (j + 2) * c_dim1] = f13;
+			      c[i + (j + 3) * c_dim1] = f14;
+			    }
+			}
+		    }
+		  if (ujsec < jsec)
+		    {
+		      i4 = jj + jsec - 1;
+		      for (j = jj + ujsec; j <= i4; ++j)
+			{
+			  i5 = ii + uisec - 1;
+			  for (i = ii; i <= i5; i += 4)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      f21 = c[i + 1 + j * c_dim1];
+			      f31 = c[i + 2 + j * c_dim1];
+			      f41 = c[i + 3 + j * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+					  257] * b[l + j * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			      c[i + 1 + j * c_dim1] = f21;
+			      c[i + 2 + j * c_dim1] = f31;
+			      c[i + 3 + j * c_dim1] = f41;
+			    }
+			  i5 = ii + isec - 1;
+			  for (i = ii + uisec; i <= i5; ++i)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			    }
+			}
+		    }
 		}
 	    }
 	}
+      return;
     }
   else if (rxstride == 1 && aystride == 1 && bxstride == 1)
     {
@@ -334,7 +567,9 @@ matmul_r10 (gfc_array_r10 * const restrict retarray,
 	for (n = 0; n < count; n++)
 	  for (x = 0; x < xcount; x++)
 	    /* dest[x,y] += a[x,n] * b[n,y] */
-	    dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
+	    dest[x*rxstride + y*rystride] +=
+					abase[x*axstride + n*aystride] *
+					bbase[n*bxstride + y*bystride];
     }
   else if (GFC_DESCRIPTOR_RANK (a) == 1)
     {
@@ -372,5 +607,4 @@ matmul_r10 (gfc_array_r10 * const restrict retarray,
 	}
     }
 }
-
 #endif
diff --git a/libgfortran/generated/matmul_r16.c b/libgfortran/generated/matmul_r16.c
index d2f11bdd9844c9fb97496d2902abe8d0e59de506..4ebd104594bf801817ab640c5d77adc66b95e833 100644
--- a/libgfortran/generated/matmul_r16.c
+++ b/libgfortran/generated/matmul_r16.c
@@ -32,7 +32,7 @@ see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
 #if defined (HAVE_GFC_REAL_16)
 
 /* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
-   passed to us by the front-end, in which case we'll call it for large
+   passed to us by the front-end, in which case we call it for large
    matrices.  */
 
 typedef void (*blas_call)(const char *, const char *, const int *, const int *,
@@ -99,7 +99,7 @@ matmul_r16 (gfc_array_r16 * const restrict retarray,
 
    o One-dimensional argument B is implicitly treated as a column matrix
      dimensioned [count, 1], so ycount=1.
-  */
+*/
 
   if (retarray->base_addr == NULL)
     {
@@ -127,47 +127,47 @@ matmul_r16 (gfc_array_r16 * const restrict retarray,
 	= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_REAL_16));
       retarray->offset = 0;
     }
-    else if (unlikely (compile_options.bounds_check))
-      {
-	index_type ret_extent, arg_extent;
-
-	if (GFC_DESCRIPTOR_RANK (a) == 1)
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic: is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-	  }
-	else if (GFC_DESCRIPTOR_RANK (b) == 1)
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic: is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);	    
-	  }
-	else
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic for dimension 1:"
-			     " is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic for dimension 2:"
-			     " is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-	  }
-      }
+  else if (unlikely (compile_options.bounds_check))
+    {
+      index_type ret_extent, arg_extent;
+
+      if (GFC_DESCRIPTOR_RANK (a) == 1)
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic: is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+      else if (GFC_DESCRIPTOR_RANK (b) == 1)
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic: is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+      else
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic for dimension 1:"
+			   " is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic for dimension 2:"
+			   " is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+    }
 
 
   if (GFC_DESCRIPTOR_RANK (retarray) == 1)
@@ -230,61 +230,294 @@ matmul_r16 (gfc_array_r16 * const restrict retarray,
   bbase = b->base_addr;
   dest = retarray->base_addr;
 
-
-  /* Now that everything is set up, we're performing the multiplication
+  /* Now that everything is set up, we perform the multiplication
      itself.  */
 
 #define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
 
   if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
       && (bxstride == 1 || bystride == 1)
       && (((float) xcount) * ((float) ycount) * ((float) count)
           > POW3(blas_limit)))
-  {
-    const int m = xcount, n = ycount, k = count, ldc = rystride;
-    const GFC_REAL_16 one = 1, zero = 0;
-    const int lda = (axstride == 1) ? aystride : axstride,
-              ldb = (bxstride == 1) ? bystride : bxstride;
-
-    if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
-      {
-        assert (gemm != NULL);
-        gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k,
-              &one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1);
-        return;
-      }
-  }
-
-  if (rxstride == 1 && axstride == 1 && bxstride == 1)
     {
-      const GFC_REAL_16 * restrict bbase_y;
-      GFC_REAL_16 * restrict dest_y;
-      const GFC_REAL_16 * restrict abase_n;
-      GFC_REAL_16 bbase_yn;
+      const int m = xcount, n = ycount, k = count, ldc = rystride;
+      const GFC_REAL_16 one = 1, zero = 0;
+      const int lda = (axstride == 1) ? aystride : axstride,
+		ldb = (bxstride == 1) ? bystride : bxstride;
 
-      if (rystride == xcount)
-	memset (dest, 0, (sizeof (GFC_REAL_16) * xcount * ycount));
-      else
+      if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
 	{
-	  for (y = 0; y < ycount; y++)
-	    for (x = 0; x < xcount; x++)
-	      dest[x + y*rystride] = (GFC_REAL_16)0;
+	  assert (gemm != NULL);
+	  gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+		&n, &k,	&one, abase, &lda, bbase, &ldb, &zero, dest,
+		&ldc, 1, 1);
+	  return;
 	}
+    }
 
-      for (y = 0; y < ycount; y++)
+  if (rxstride == 1 && axstride == 1 && bxstride == 1)
+    {
+      /* This block of code implements a tuned matmul, derived from
+         Superscalar GEMM-based level 3 BLAS,  Beta version 0.1
+
+               Bo Kagstrom and Per Ling
+               Department of Computing Science
+               Umea University
+               S-901 87 Umea, Sweden
+
+	 from netlib.org, translated to C, and modified for matmul.m4.  */
+
+      const GFC_REAL_16 *a, *b;
+      GFC_REAL_16 *c;
+      const index_type m = xcount, n = ycount, k = count;
+
+      /* System generated locals */
+      index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+		 i1, i2, i3, i4, i5, i6;
+
+      /* Local variables */
+      GFC_REAL_16 t1[65536], /* was [256][256] */
+		 f11, f12, f21, f22, f31, f32, f41, f42,
+		 f13, f14, f23, f24, f33, f34, f43, f44;
+      index_type i, j, l, ii, jj, ll;
+      index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+      a = abase;
+      b = bbase;
+      c = retarray->base_addr;
+
+      /* Parameter adjustments */
+      c_dim1 = rystride;
+      c_offset = 1 + c_dim1;
+      c -= c_offset;
+      a_dim1 = aystride;
+      a_offset = 1 + a_dim1;
+      a -= a_offset;
+      b_dim1 = bystride;
+      b_offset = 1 + b_dim1;
+      b -= b_offset;
+
+      /* Early exit if possible */
+      if (m == 0 || n == 0 || k == 0)
+	return;
+
+      /* Empty c first.  */
+      for (j=1; j<=n; j++)
+	for (i=1; i<=m; i++)
+	  c[i + j * c_dim1] = (GFC_REAL_16)0;
+
+      /* Start turning the crank. */
+      i1 = n;
+      for (jj = 1; jj <= i1; jj += 512)
 	{
-	  bbase_y = bbase + y*bystride;
-	  dest_y = dest + y*rystride;
-	  for (n = 0; n < count; n++)
+	  /* Computing MIN */
+	  i2 = 512;
+	  i3 = n - jj + 1;
+	  jsec = min(i2,i3);
+	  ujsec = jsec - jsec % 4;
+	  i2 = k;
+	  for (ll = 1; ll <= i2; ll += 256)
 	    {
-	      abase_n = abase + n*aystride;
-	      bbase_yn = bbase_y[n];
-	      for (x = 0; x < xcount; x++)
+	      /* Computing MIN */
+	      i3 = 256;
+	      i4 = k - ll + 1;
+	      lsec = min(i3,i4);
+	      ulsec = lsec - lsec % 2;
+
+	      i3 = m;
+	      for (ii = 1; ii <= i3; ii += 256)
 		{
-		  dest_y[x] += abase_n[x] * bbase_yn;
+		  /* Computing MIN */
+		  i4 = 256;
+		  i5 = m - ii + 1;
+		  isec = min(i4,i5);
+		  uisec = isec - isec % 2;
+		  i4 = ll + ulsec - 1;
+		  for (l = ll; l <= i4; l += 2)
+		    {
+		      i5 = ii + uisec - 1;
+		      for (i = ii; i <= i5; i += 2)
+			{
+			  t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+					a[i + l * a_dim1];
+			  t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+					a[i + (l + 1) * a_dim1];
+			  t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+					a[i + 1 + l * a_dim1];
+			  t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+					a[i + 1 + (l + 1) * a_dim1];
+			}
+		      if (uisec < isec)
+			{
+			  t1[l - ll + 1 + (isec << 8) - 257] =
+				    a[ii + isec - 1 + l * a_dim1];
+			  t1[l - ll + 2 + (isec << 8) - 257] =
+				    a[ii + isec - 1 + (l + 1) * a_dim1];
+			}
+		    }
+		  if (ulsec < lsec)
+		    {
+		      i4 = ii + isec - 1;
+		      for (i = ii; i<= i4; ++i)
+			{
+			  t1[lsec + ((i - ii + 1) << 8) - 257] =
+				    a[i + (ll + lsec - 1) * a_dim1];
+			}
+		    }
+
+		  uisec = isec - isec % 4;
+		  i4 = jj + ujsec - 1;
+		  for (j = jj; j <= i4; j += 4)
+		    {
+		      i5 = ii + uisec - 1;
+		      for (i = ii; i <= i5; i += 4)
+			{
+			  f11 = c[i + j * c_dim1];
+			  f21 = c[i + 1 + j * c_dim1];
+			  f12 = c[i + (j + 1) * c_dim1];
+			  f22 = c[i + 1 + (j + 1) * c_dim1];
+			  f13 = c[i + (j + 2) * c_dim1];
+			  f23 = c[i + 1 + (j + 2) * c_dim1];
+			  f14 = c[i + (j + 3) * c_dim1];
+			  f24 = c[i + 1 + (j + 3) * c_dim1];
+			  f31 = c[i + 2 + j * c_dim1];
+			  f41 = c[i + 3 + j * c_dim1];
+			  f32 = c[i + 2 + (j + 1) * c_dim1];
+			  f42 = c[i + 3 + (j + 1) * c_dim1];
+			  f33 = c[i + 2 + (j + 2) * c_dim1];
+			  f43 = c[i + 3 + (j + 2) * c_dim1];
+			  f34 = c[i + 2 + (j + 3) * c_dim1];
+			  f44 = c[i + 3 + (j + 3) * c_dim1];
+			  i6 = ll + lsec - 1;
+			  for (l = ll; l <= i6; ++l)
+			    {
+			      f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			    }
+			  c[i + j * c_dim1] = f11;
+			  c[i + 1 + j * c_dim1] = f21;
+			  c[i + (j + 1) * c_dim1] = f12;
+			  c[i + 1 + (j + 1) * c_dim1] = f22;
+			  c[i + (j + 2) * c_dim1] = f13;
+			  c[i + 1 + (j + 2) * c_dim1] = f23;
+			  c[i + (j + 3) * c_dim1] = f14;
+			  c[i + 1 + (j + 3) * c_dim1] = f24;
+			  c[i + 2 + j * c_dim1] = f31;
+			  c[i + 3 + j * c_dim1] = f41;
+			  c[i + 2 + (j + 1) * c_dim1] = f32;
+			  c[i + 3 + (j + 1) * c_dim1] = f42;
+			  c[i + 2 + (j + 2) * c_dim1] = f33;
+			  c[i + 3 + (j + 2) * c_dim1] = f43;
+			  c[i + 2 + (j + 3) * c_dim1] = f34;
+			  c[i + 3 + (j + 3) * c_dim1] = f44;
+			}
+		      if (uisec < isec)
+			{
+			  i5 = ii + isec - 1;
+			  for (i = ii + uisec; i <= i5; ++i)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      f12 = c[i + (j + 1) * c_dim1];
+			      f13 = c[i + (j + 2) * c_dim1];
+			      f14 = c[i + (j + 3) * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 1) * b_dim1];
+				  f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 2) * b_dim1];
+				  f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 3) * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			      c[i + (j + 1) * c_dim1] = f12;
+			      c[i + (j + 2) * c_dim1] = f13;
+			      c[i + (j + 3) * c_dim1] = f14;
+			    }
+			}
+		    }
+		  if (ujsec < jsec)
+		    {
+		      i4 = jj + jsec - 1;
+		      for (j = jj + ujsec; j <= i4; ++j)
+			{
+			  i5 = ii + uisec - 1;
+			  for (i = ii; i <= i5; i += 4)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      f21 = c[i + 1 + j * c_dim1];
+			      f31 = c[i + 2 + j * c_dim1];
+			      f41 = c[i + 3 + j * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+					  257] * b[l + j * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			      c[i + 1 + j * c_dim1] = f21;
+			      c[i + 2 + j * c_dim1] = f31;
+			      c[i + 3 + j * c_dim1] = f41;
+			    }
+			  i5 = ii + isec - 1;
+			  for (i = ii + uisec; i <= i5; ++i)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			    }
+			}
+		    }
 		}
 	    }
 	}
+      return;
     }
   else if (rxstride == 1 && aystride == 1 && bxstride == 1)
     {
@@ -334,7 +567,9 @@ matmul_r16 (gfc_array_r16 * const restrict retarray,
 	for (n = 0; n < count; n++)
 	  for (x = 0; x < xcount; x++)
 	    /* dest[x,y] += a[x,n] * b[n,y] */
-	    dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
+	    dest[x*rxstride + y*rystride] +=
+					abase[x*axstride + n*aystride] *
+					bbase[n*bxstride + y*bystride];
     }
   else if (GFC_DESCRIPTOR_RANK (a) == 1)
     {
@@ -372,5 +607,4 @@ matmul_r16 (gfc_array_r16 * const restrict retarray,
 	}
     }
 }
-
 #endif
diff --git a/libgfortran/generated/matmul_r4.c b/libgfortran/generated/matmul_r4.c
index ff3b93ff4d47c6c84b76286cb8af6f85bec22154..cf3ffa352328f3246ffaf14e98d8a4b6f0fe354e 100644
--- a/libgfortran/generated/matmul_r4.c
+++ b/libgfortran/generated/matmul_r4.c
@@ -32,7 +32,7 @@ see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
 #if defined (HAVE_GFC_REAL_4)
 
 /* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
-   passed to us by the front-end, in which case we'll call it for large
+   passed to us by the front-end, in which case we call it for large
    matrices.  */
 
 typedef void (*blas_call)(const char *, const char *, const int *, const int *,
@@ -99,7 +99,7 @@ matmul_r4 (gfc_array_r4 * const restrict retarray,
 
    o One-dimensional argument B is implicitly treated as a column matrix
      dimensioned [count, 1], so ycount=1.
-  */
+*/
 
   if (retarray->base_addr == NULL)
     {
@@ -127,47 +127,47 @@ matmul_r4 (gfc_array_r4 * const restrict retarray,
 	= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_REAL_4));
       retarray->offset = 0;
     }
-    else if (unlikely (compile_options.bounds_check))
-      {
-	index_type ret_extent, arg_extent;
-
-	if (GFC_DESCRIPTOR_RANK (a) == 1)
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic: is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-	  }
-	else if (GFC_DESCRIPTOR_RANK (b) == 1)
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic: is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);	    
-	  }
-	else
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic for dimension 1:"
-			     " is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic for dimension 2:"
-			     " is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-	  }
-      }
+  else if (unlikely (compile_options.bounds_check))
+    {
+      index_type ret_extent, arg_extent;
+
+      if (GFC_DESCRIPTOR_RANK (a) == 1)
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic: is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+      else if (GFC_DESCRIPTOR_RANK (b) == 1)
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic: is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+      else
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic for dimension 1:"
+			   " is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic for dimension 2:"
+			   " is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+    }
 
 
   if (GFC_DESCRIPTOR_RANK (retarray) == 1)
@@ -230,61 +230,294 @@ matmul_r4 (gfc_array_r4 * const restrict retarray,
   bbase = b->base_addr;
   dest = retarray->base_addr;
 
-
-  /* Now that everything is set up, we're performing the multiplication
+  /* Now that everything is set up, we perform the multiplication
      itself.  */
 
 #define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
 
   if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
       && (bxstride == 1 || bystride == 1)
       && (((float) xcount) * ((float) ycount) * ((float) count)
           > POW3(blas_limit)))
-  {
-    const int m = xcount, n = ycount, k = count, ldc = rystride;
-    const GFC_REAL_4 one = 1, zero = 0;
-    const int lda = (axstride == 1) ? aystride : axstride,
-              ldb = (bxstride == 1) ? bystride : bxstride;
-
-    if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
-      {
-        assert (gemm != NULL);
-        gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k,
-              &one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1);
-        return;
-      }
-  }
-
-  if (rxstride == 1 && axstride == 1 && bxstride == 1)
     {
-      const GFC_REAL_4 * restrict bbase_y;
-      GFC_REAL_4 * restrict dest_y;
-      const GFC_REAL_4 * restrict abase_n;
-      GFC_REAL_4 bbase_yn;
+      const int m = xcount, n = ycount, k = count, ldc = rystride;
+      const GFC_REAL_4 one = 1, zero = 0;
+      const int lda = (axstride == 1) ? aystride : axstride,
+		ldb = (bxstride == 1) ? bystride : bxstride;
 
-      if (rystride == xcount)
-	memset (dest, 0, (sizeof (GFC_REAL_4) * xcount * ycount));
-      else
+      if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
 	{
-	  for (y = 0; y < ycount; y++)
-	    for (x = 0; x < xcount; x++)
-	      dest[x + y*rystride] = (GFC_REAL_4)0;
+	  assert (gemm != NULL);
+	  gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+		&n, &k,	&one, abase, &lda, bbase, &ldb, &zero, dest,
+		&ldc, 1, 1);
+	  return;
 	}
+    }
 
-      for (y = 0; y < ycount; y++)
+  if (rxstride == 1 && axstride == 1 && bxstride == 1)
+    {
+      /* This block of code implements a tuned matmul, derived from
+         Superscalar GEMM-based level 3 BLAS,  Beta version 0.1
+
+               Bo Kagstrom and Per Ling
+               Department of Computing Science
+               Umea University
+               S-901 87 Umea, Sweden
+
+	 from netlib.org, translated to C, and modified for matmul.m4.  */
+
+      const GFC_REAL_4 *a, *b;
+      GFC_REAL_4 *c;
+      const index_type m = xcount, n = ycount, k = count;
+
+      /* System generated locals */
+      index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+		 i1, i2, i3, i4, i5, i6;
+
+      /* Local variables */
+      GFC_REAL_4 t1[65536], /* was [256][256] */
+		 f11, f12, f21, f22, f31, f32, f41, f42,
+		 f13, f14, f23, f24, f33, f34, f43, f44;
+      index_type i, j, l, ii, jj, ll;
+      index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+      a = abase;
+      b = bbase;
+      c = retarray->base_addr;
+
+      /* Parameter adjustments */
+      c_dim1 = rystride;
+      c_offset = 1 + c_dim1;
+      c -= c_offset;
+      a_dim1 = aystride;
+      a_offset = 1 + a_dim1;
+      a -= a_offset;
+      b_dim1 = bystride;
+      b_offset = 1 + b_dim1;
+      b -= b_offset;
+
+      /* Early exit if possible */
+      if (m == 0 || n == 0 || k == 0)
+	return;
+
+      /* Empty c first.  */
+      for (j=1; j<=n; j++)
+	for (i=1; i<=m; i++)
+	  c[i + j * c_dim1] = (GFC_REAL_4)0;
+
+      /* Start turning the crank. */
+      i1 = n;
+      for (jj = 1; jj <= i1; jj += 512)
 	{
-	  bbase_y = bbase + y*bystride;
-	  dest_y = dest + y*rystride;
-	  for (n = 0; n < count; n++)
+	  /* Computing MIN */
+	  i2 = 512;
+	  i3 = n - jj + 1;
+	  jsec = min(i2,i3);
+	  ujsec = jsec - jsec % 4;
+	  i2 = k;
+	  for (ll = 1; ll <= i2; ll += 256)
 	    {
-	      abase_n = abase + n*aystride;
-	      bbase_yn = bbase_y[n];
-	      for (x = 0; x < xcount; x++)
+	      /* Computing MIN */
+	      i3 = 256;
+	      i4 = k - ll + 1;
+	      lsec = min(i3,i4);
+	      ulsec = lsec - lsec % 2;
+
+	      i3 = m;
+	      for (ii = 1; ii <= i3; ii += 256)
 		{
-		  dest_y[x] += abase_n[x] * bbase_yn;
+		  /* Computing MIN */
+		  i4 = 256;
+		  i5 = m - ii + 1;
+		  isec = min(i4,i5);
+		  uisec = isec - isec % 2;
+		  i4 = ll + ulsec - 1;
+		  for (l = ll; l <= i4; l += 2)
+		    {
+		      i5 = ii + uisec - 1;
+		      for (i = ii; i <= i5; i += 2)
+			{
+			  t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+					a[i + l * a_dim1];
+			  t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+					a[i + (l + 1) * a_dim1];
+			  t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+					a[i + 1 + l * a_dim1];
+			  t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+					a[i + 1 + (l + 1) * a_dim1];
+			}
+		      if (uisec < isec)
+			{
+			  t1[l - ll + 1 + (isec << 8) - 257] =
+				    a[ii + isec - 1 + l * a_dim1];
+			  t1[l - ll + 2 + (isec << 8) - 257] =
+				    a[ii + isec - 1 + (l + 1) * a_dim1];
+			}
+		    }
+		  if (ulsec < lsec)
+		    {
+		      i4 = ii + isec - 1;
+		      for (i = ii; i<= i4; ++i)
+			{
+			  t1[lsec + ((i - ii + 1) << 8) - 257] =
+				    a[i + (ll + lsec - 1) * a_dim1];
+			}
+		    }
+
+		  uisec = isec - isec % 4;
+		  i4 = jj + ujsec - 1;
+		  for (j = jj; j <= i4; j += 4)
+		    {
+		      i5 = ii + uisec - 1;
+		      for (i = ii; i <= i5; i += 4)
+			{
+			  f11 = c[i + j * c_dim1];
+			  f21 = c[i + 1 + j * c_dim1];
+			  f12 = c[i + (j + 1) * c_dim1];
+			  f22 = c[i + 1 + (j + 1) * c_dim1];
+			  f13 = c[i + (j + 2) * c_dim1];
+			  f23 = c[i + 1 + (j + 2) * c_dim1];
+			  f14 = c[i + (j + 3) * c_dim1];
+			  f24 = c[i + 1 + (j + 3) * c_dim1];
+			  f31 = c[i + 2 + j * c_dim1];
+			  f41 = c[i + 3 + j * c_dim1];
+			  f32 = c[i + 2 + (j + 1) * c_dim1];
+			  f42 = c[i + 3 + (j + 1) * c_dim1];
+			  f33 = c[i + 2 + (j + 2) * c_dim1];
+			  f43 = c[i + 3 + (j + 2) * c_dim1];
+			  f34 = c[i + 2 + (j + 3) * c_dim1];
+			  f44 = c[i + 3 + (j + 3) * c_dim1];
+			  i6 = ll + lsec - 1;
+			  for (l = ll; l <= i6; ++l)
+			    {
+			      f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			    }
+			  c[i + j * c_dim1] = f11;
+			  c[i + 1 + j * c_dim1] = f21;
+			  c[i + (j + 1) * c_dim1] = f12;
+			  c[i + 1 + (j + 1) * c_dim1] = f22;
+			  c[i + (j + 2) * c_dim1] = f13;
+			  c[i + 1 + (j + 2) * c_dim1] = f23;
+			  c[i + (j + 3) * c_dim1] = f14;
+			  c[i + 1 + (j + 3) * c_dim1] = f24;
+			  c[i + 2 + j * c_dim1] = f31;
+			  c[i + 3 + j * c_dim1] = f41;
+			  c[i + 2 + (j + 1) * c_dim1] = f32;
+			  c[i + 3 + (j + 1) * c_dim1] = f42;
+			  c[i + 2 + (j + 2) * c_dim1] = f33;
+			  c[i + 3 + (j + 2) * c_dim1] = f43;
+			  c[i + 2 + (j + 3) * c_dim1] = f34;
+			  c[i + 3 + (j + 3) * c_dim1] = f44;
+			}
+		      if (uisec < isec)
+			{
+			  i5 = ii + isec - 1;
+			  for (i = ii + uisec; i <= i5; ++i)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      f12 = c[i + (j + 1) * c_dim1];
+			      f13 = c[i + (j + 2) * c_dim1];
+			      f14 = c[i + (j + 3) * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 1) * b_dim1];
+				  f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 2) * b_dim1];
+				  f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 3) * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			      c[i + (j + 1) * c_dim1] = f12;
+			      c[i + (j + 2) * c_dim1] = f13;
+			      c[i + (j + 3) * c_dim1] = f14;
+			    }
+			}
+		    }
+		  if (ujsec < jsec)
+		    {
+		      i4 = jj + jsec - 1;
+		      for (j = jj + ujsec; j <= i4; ++j)
+			{
+			  i5 = ii + uisec - 1;
+			  for (i = ii; i <= i5; i += 4)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      f21 = c[i + 1 + j * c_dim1];
+			      f31 = c[i + 2 + j * c_dim1];
+			      f41 = c[i + 3 + j * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+					  257] * b[l + j * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			      c[i + 1 + j * c_dim1] = f21;
+			      c[i + 2 + j * c_dim1] = f31;
+			      c[i + 3 + j * c_dim1] = f41;
+			    }
+			  i5 = ii + isec - 1;
+			  for (i = ii + uisec; i <= i5; ++i)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			    }
+			}
+		    }
 		}
 	    }
 	}
+      return;
     }
   else if (rxstride == 1 && aystride == 1 && bxstride == 1)
     {
@@ -334,7 +567,9 @@ matmul_r4 (gfc_array_r4 * const restrict retarray,
 	for (n = 0; n < count; n++)
 	  for (x = 0; x < xcount; x++)
 	    /* dest[x,y] += a[x,n] * b[n,y] */
-	    dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
+	    dest[x*rxstride + y*rystride] +=
+					abase[x*axstride + n*aystride] *
+					bbase[n*bxstride + y*bystride];
     }
   else if (GFC_DESCRIPTOR_RANK (a) == 1)
     {
@@ -372,5 +607,4 @@ matmul_r4 (gfc_array_r4 * const restrict retarray,
 	}
     }
 }
-
 #endif
diff --git a/libgfortran/generated/matmul_r8.c b/libgfortran/generated/matmul_r8.c
index af805ee45eec21845df9d9b9784f653dae250f9d..9a70a23df0bb1a2a6bbc02ef8ec428d312808e57 100644
--- a/libgfortran/generated/matmul_r8.c
+++ b/libgfortran/generated/matmul_r8.c
@@ -32,7 +32,7 @@ see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
 #if defined (HAVE_GFC_REAL_8)
 
 /* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
-   passed to us by the front-end, in which case we'll call it for large
+   passed to us by the front-end, in which case we call it for large
    matrices.  */
 
 typedef void (*blas_call)(const char *, const char *, const int *, const int *,
@@ -99,7 +99,7 @@ matmul_r8 (gfc_array_r8 * const restrict retarray,
 
    o One-dimensional argument B is implicitly treated as a column matrix
      dimensioned [count, 1], so ycount=1.
-  */
+*/
 
   if (retarray->base_addr == NULL)
     {
@@ -127,47 +127,47 @@ matmul_r8 (gfc_array_r8 * const restrict retarray,
 	= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_REAL_8));
       retarray->offset = 0;
     }
-    else if (unlikely (compile_options.bounds_check))
-      {
-	index_type ret_extent, arg_extent;
-
-	if (GFC_DESCRIPTOR_RANK (a) == 1)
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic: is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-	  }
-	else if (GFC_DESCRIPTOR_RANK (b) == 1)
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic: is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);	    
-	  }
-	else
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic for dimension 1:"
-			     " is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic for dimension 2:"
-			     " is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-	  }
-      }
+  else if (unlikely (compile_options.bounds_check))
+    {
+      index_type ret_extent, arg_extent;
+
+      if (GFC_DESCRIPTOR_RANK (a) == 1)
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic: is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+      else if (GFC_DESCRIPTOR_RANK (b) == 1)
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic: is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+      else
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic for dimension 1:"
+			   " is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic for dimension 2:"
+			   " is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+    }
 
 
   if (GFC_DESCRIPTOR_RANK (retarray) == 1)
@@ -230,61 +230,294 @@ matmul_r8 (gfc_array_r8 * const restrict retarray,
   bbase = b->base_addr;
   dest = retarray->base_addr;
 
-
-  /* Now that everything is set up, we're performing the multiplication
+  /* Now that everything is set up, we perform the multiplication
      itself.  */
 
 #define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
 
   if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
       && (bxstride == 1 || bystride == 1)
       && (((float) xcount) * ((float) ycount) * ((float) count)
           > POW3(blas_limit)))
-  {
-    const int m = xcount, n = ycount, k = count, ldc = rystride;
-    const GFC_REAL_8 one = 1, zero = 0;
-    const int lda = (axstride == 1) ? aystride : axstride,
-              ldb = (bxstride == 1) ? bystride : bxstride;
-
-    if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
-      {
-        assert (gemm != NULL);
-        gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k,
-              &one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1);
-        return;
-      }
-  }
-
-  if (rxstride == 1 && axstride == 1 && bxstride == 1)
     {
-      const GFC_REAL_8 * restrict bbase_y;
-      GFC_REAL_8 * restrict dest_y;
-      const GFC_REAL_8 * restrict abase_n;
-      GFC_REAL_8 bbase_yn;
+      const int m = xcount, n = ycount, k = count, ldc = rystride;
+      const GFC_REAL_8 one = 1, zero = 0;
+      const int lda = (axstride == 1) ? aystride : axstride,
+		ldb = (bxstride == 1) ? bystride : bxstride;
 
-      if (rystride == xcount)
-	memset (dest, 0, (sizeof (GFC_REAL_8) * xcount * ycount));
-      else
+      if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
 	{
-	  for (y = 0; y < ycount; y++)
-	    for (x = 0; x < xcount; x++)
-	      dest[x + y*rystride] = (GFC_REAL_8)0;
+	  assert (gemm != NULL);
+	  gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+		&n, &k,	&one, abase, &lda, bbase, &ldb, &zero, dest,
+		&ldc, 1, 1);
+	  return;
 	}
+    }
 
-      for (y = 0; y < ycount; y++)
+  if (rxstride == 1 && axstride == 1 && bxstride == 1)
+    {
+      /* This block of code implements a tuned matmul, derived from
+         Superscalar GEMM-based level 3 BLAS,  Beta version 0.1
+
+               Bo Kagstrom and Per Ling
+               Department of Computing Science
+               Umea University
+               S-901 87 Umea, Sweden
+
+	 from netlib.org, translated to C, and modified for matmul.m4.  */
+
+      const GFC_REAL_8 *a, *b;
+      GFC_REAL_8 *c;
+      const index_type m = xcount, n = ycount, k = count;
+
+      /* System generated locals */
+      index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+		 i1, i2, i3, i4, i5, i6;
+
+      /* Local variables */
+      GFC_REAL_8 t1[65536], /* was [256][256] */
+		 f11, f12, f21, f22, f31, f32, f41, f42,
+		 f13, f14, f23, f24, f33, f34, f43, f44;
+      index_type i, j, l, ii, jj, ll;
+      index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+      a = abase;
+      b = bbase;
+      c = retarray->base_addr;
+
+      /* Parameter adjustments */
+      c_dim1 = rystride;
+      c_offset = 1 + c_dim1;
+      c -= c_offset;
+      a_dim1 = aystride;
+      a_offset = 1 + a_dim1;
+      a -= a_offset;
+      b_dim1 = bystride;
+      b_offset = 1 + b_dim1;
+      b -= b_offset;
+
+      /* Early exit if possible */
+      if (m == 0 || n == 0 || k == 0)
+	return;
+
+      /* Empty c first.  */
+      for (j=1; j<=n; j++)
+	for (i=1; i<=m; i++)
+	  c[i + j * c_dim1] = (GFC_REAL_8)0;
+
+      /* Start turning the crank. */
+      i1 = n;
+      for (jj = 1; jj <= i1; jj += 512)
 	{
-	  bbase_y = bbase + y*bystride;
-	  dest_y = dest + y*rystride;
-	  for (n = 0; n < count; n++)
+	  /* Computing MIN */
+	  i2 = 512;
+	  i3 = n - jj + 1;
+	  jsec = min(i2,i3);
+	  ujsec = jsec - jsec % 4;
+	  i2 = k;
+	  for (ll = 1; ll <= i2; ll += 256)
 	    {
-	      abase_n = abase + n*aystride;
-	      bbase_yn = bbase_y[n];
-	      for (x = 0; x < xcount; x++)
+	      /* Computing MIN */
+	      i3 = 256;
+	      i4 = k - ll + 1;
+	      lsec = min(i3,i4);
+	      ulsec = lsec - lsec % 2;
+
+	      i3 = m;
+	      for (ii = 1; ii <= i3; ii += 256)
 		{
-		  dest_y[x] += abase_n[x] * bbase_yn;
+		  /* Computing MIN */
+		  i4 = 256;
+		  i5 = m - ii + 1;
+		  isec = min(i4,i5);
+		  uisec = isec - isec % 2;
+		  i4 = ll + ulsec - 1;
+		  for (l = ll; l <= i4; l += 2)
+		    {
+		      i5 = ii + uisec - 1;
+		      for (i = ii; i <= i5; i += 2)
+			{
+			  t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+					a[i + l * a_dim1];
+			  t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+					a[i + (l + 1) * a_dim1];
+			  t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+					a[i + 1 + l * a_dim1];
+			  t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+					a[i + 1 + (l + 1) * a_dim1];
+			}
+		      if (uisec < isec)
+			{
+			  t1[l - ll + 1 + (isec << 8) - 257] =
+				    a[ii + isec - 1 + l * a_dim1];
+			  t1[l - ll + 2 + (isec << 8) - 257] =
+				    a[ii + isec - 1 + (l + 1) * a_dim1];
+			}
+		    }
+		  if (ulsec < lsec)
+		    {
+		      i4 = ii + isec - 1;
+		      for (i = ii; i<= i4; ++i)
+			{
+			  t1[lsec + ((i - ii + 1) << 8) - 257] =
+				    a[i + (ll + lsec - 1) * a_dim1];
+			}
+		    }
+
+		  uisec = isec - isec % 4;
+		  i4 = jj + ujsec - 1;
+		  for (j = jj; j <= i4; j += 4)
+		    {
+		      i5 = ii + uisec - 1;
+		      for (i = ii; i <= i5; i += 4)
+			{
+			  f11 = c[i + j * c_dim1];
+			  f21 = c[i + 1 + j * c_dim1];
+			  f12 = c[i + (j + 1) * c_dim1];
+			  f22 = c[i + 1 + (j + 1) * c_dim1];
+			  f13 = c[i + (j + 2) * c_dim1];
+			  f23 = c[i + 1 + (j + 2) * c_dim1];
+			  f14 = c[i + (j + 3) * c_dim1];
+			  f24 = c[i + 1 + (j + 3) * c_dim1];
+			  f31 = c[i + 2 + j * c_dim1];
+			  f41 = c[i + 3 + j * c_dim1];
+			  f32 = c[i + 2 + (j + 1) * c_dim1];
+			  f42 = c[i + 3 + (j + 1) * c_dim1];
+			  f33 = c[i + 2 + (j + 2) * c_dim1];
+			  f43 = c[i + 3 + (j + 2) * c_dim1];
+			  f34 = c[i + 2 + (j + 3) * c_dim1];
+			  f44 = c[i + 3 + (j + 3) * c_dim1];
+			  i6 = ll + lsec - 1;
+			  for (l = ll; l <= i6; ++l)
+			    {
+			      f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			    }
+			  c[i + j * c_dim1] = f11;
+			  c[i + 1 + j * c_dim1] = f21;
+			  c[i + (j + 1) * c_dim1] = f12;
+			  c[i + 1 + (j + 1) * c_dim1] = f22;
+			  c[i + (j + 2) * c_dim1] = f13;
+			  c[i + 1 + (j + 2) * c_dim1] = f23;
+			  c[i + (j + 3) * c_dim1] = f14;
+			  c[i + 1 + (j + 3) * c_dim1] = f24;
+			  c[i + 2 + j * c_dim1] = f31;
+			  c[i + 3 + j * c_dim1] = f41;
+			  c[i + 2 + (j + 1) * c_dim1] = f32;
+			  c[i + 3 + (j + 1) * c_dim1] = f42;
+			  c[i + 2 + (j + 2) * c_dim1] = f33;
+			  c[i + 3 + (j + 2) * c_dim1] = f43;
+			  c[i + 2 + (j + 3) * c_dim1] = f34;
+			  c[i + 3 + (j + 3) * c_dim1] = f44;
+			}
+		      if (uisec < isec)
+			{
+			  i5 = ii + isec - 1;
+			  for (i = ii + uisec; i <= i5; ++i)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      f12 = c[i + (j + 1) * c_dim1];
+			      f13 = c[i + (j + 2) * c_dim1];
+			      f14 = c[i + (j + 3) * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 1) * b_dim1];
+				  f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 2) * b_dim1];
+				  f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 3) * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			      c[i + (j + 1) * c_dim1] = f12;
+			      c[i + (j + 2) * c_dim1] = f13;
+			      c[i + (j + 3) * c_dim1] = f14;
+			    }
+			}
+		    }
+		  if (ujsec < jsec)
+		    {
+		      i4 = jj + jsec - 1;
+		      for (j = jj + ujsec; j <= i4; ++j)
+			{
+			  i5 = ii + uisec - 1;
+			  for (i = ii; i <= i5; i += 4)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      f21 = c[i + 1 + j * c_dim1];
+			      f31 = c[i + 2 + j * c_dim1];
+			      f41 = c[i + 3 + j * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+					  257] * b[l + j * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			      c[i + 1 + j * c_dim1] = f21;
+			      c[i + 2 + j * c_dim1] = f31;
+			      c[i + 3 + j * c_dim1] = f41;
+			    }
+			  i5 = ii + isec - 1;
+			  for (i = ii + uisec; i <= i5; ++i)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			    }
+			}
+		    }
 		}
 	    }
 	}
+      return;
     }
   else if (rxstride == 1 && aystride == 1 && bxstride == 1)
     {
@@ -334,7 +567,9 @@ matmul_r8 (gfc_array_r8 * const restrict retarray,
 	for (n = 0; n < count; n++)
 	  for (x = 0; x < xcount; x++)
 	    /* dest[x,y] += a[x,n] * b[n,y] */
-	    dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
+	    dest[x*rxstride + y*rystride] +=
+					abase[x*axstride + n*aystride] *
+					bbase[n*bxstride + y*bystride];
     }
   else if (GFC_DESCRIPTOR_RANK (a) == 1)
     {
@@ -372,5 +607,4 @@ matmul_r8 (gfc_array_r8 * const restrict retarray,
 	}
     }
 }
-
 #endif
diff --git a/libgfortran/m4/matmul.m4 b/libgfortran/m4/matmul.m4
index 468615b6c4255c4d7c6342b16090cecb5e539e72..77ed4408425bb47e93a2f20e908cef2ba32317ec 100644
--- a/libgfortran/m4/matmul.m4
+++ b/libgfortran/m4/matmul.m4
@@ -33,7 +33,7 @@ include(iparm.m4)dnl
 `#if defined (HAVE_'rtype_name`)
 
 /* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
-   passed to us by the front-end, in which case we''`ll call it for large
+   passed to us by the front-end, in which case we call it for large
    matrices.  */
 
 typedef void (*blas_call)(const char *, const char *, const int *, const int *,
@@ -100,7 +100,7 @@ matmul_'rtype_code` ('rtype` * const restrict retarray,
 
    o One-dimensional argument B is implicitly treated as a column matrix
      dimensioned [count, 1], so ycount=1.
-  */
+*/
 
   if (retarray->base_addr == NULL)
     {
@@ -128,47 +128,47 @@ matmul_'rtype_code` ('rtype` * const restrict retarray,
 	= xmallocarray (size0 ((array_t *) retarray), sizeof ('rtype_name`));
       retarray->offset = 0;
     }
-    else if (unlikely (compile_options.bounds_check))
-      {
-	index_type ret_extent, arg_extent;
-
-	if (GFC_DESCRIPTOR_RANK (a) == 1)
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic: is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-	  }
-	else if (GFC_DESCRIPTOR_RANK (b) == 1)
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic: is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);	    
-	  }
-	else
-	  {
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic for dimension 1:"
-			     " is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-
-	    arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
-	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
-	    if (arg_extent != ret_extent)
-	      runtime_error ("Incorrect extent in return array in"
-			     " MATMUL intrinsic for dimension 2:"
-			     " is %ld, should be %ld",
-			     (long int) ret_extent, (long int) arg_extent);
-	  }
-      }
+  else if (unlikely (compile_options.bounds_check))
+    {
+      index_type ret_extent, arg_extent;
+
+      if (GFC_DESCRIPTOR_RANK (a) == 1)
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic: is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+      else if (GFC_DESCRIPTOR_RANK (b) == 1)
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic: is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+      else
+	{
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic for dimension 1:"
+			   " is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+
+	  arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+	  ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+	  if (arg_extent != ret_extent)
+	    runtime_error ("Incorrect extent in return array in"
+			   " MATMUL intrinsic for dimension 2:"
+			   " is %ld, should be %ld",
+			   (long int) ret_extent, (long int) arg_extent);
+	}
+    }
 '
 sinclude(`matmul_asm_'rtype_code`.m4')dnl
 `
@@ -232,61 +232,294 @@ sinclude(`matmul_asm_'rtype_code`.m4')dnl
   bbase = b->base_addr;
   dest = retarray->base_addr;
 
-
-  /* Now that everything is set up, we''`re performing the multiplication
+  /* Now that everything is set up, we perform the multiplication
      itself.  */
 
 #define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
 
   if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
       && (bxstride == 1 || bystride == 1)
       && (((float) xcount) * ((float) ycount) * ((float) count)
           > POW3(blas_limit)))
-  {
-    const int m = xcount, n = ycount, k = count, ldc = rystride;
-    const 'rtype_name` one = 1, zero = 0;
-    const int lda = (axstride == 1) ? aystride : axstride,
-              ldb = (bxstride == 1) ? bystride : bxstride;
-
-    if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
-      {
-        assert (gemm != NULL);
-        gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k,
-              &one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1);
-        return;
-      }
-  }
-
-  if (rxstride == 1 && axstride == 1 && bxstride == 1)
     {
-      const 'rtype_name` * restrict bbase_y;
-      'rtype_name` * restrict dest_y;
-      const 'rtype_name` * restrict abase_n;
-      'rtype_name` bbase_yn;
+      const int m = xcount, n = ycount, k = count, ldc = rystride;
+      const 'rtype_name` one = 1, zero = 0;
+      const int lda = (axstride == 1) ? aystride : axstride,
+		ldb = (bxstride == 1) ? bystride : bxstride;
 
-      if (rystride == xcount)
-	memset (dest, 0, (sizeof ('rtype_name`) * xcount * ycount));
-      else
+      if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
 	{
-	  for (y = 0; y < ycount; y++)
-	    for (x = 0; x < xcount; x++)
-	      dest[x + y*rystride] = ('rtype_name`)0;
+	  assert (gemm != NULL);
+	  gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+		&n, &k,	&one, abase, &lda, bbase, &ldb, &zero, dest,
+		&ldc, 1, 1);
+	  return;
 	}
+    }
 
-      for (y = 0; y < ycount; y++)
+  if (rxstride == 1 && axstride == 1 && bxstride == 1)
+    {
+      /* This block of code implements a tuned matmul, derived from
+         Superscalar GEMM-based level 3 BLAS,  Beta version 0.1
+
+               Bo Kagstrom and Per Ling
+               Department of Computing Science
+               Umea University
+               S-901 87 Umea, Sweden
+
+	 from netlib.org, translated to C, and modified for matmul.m4.  */
+
+      const 'rtype_name` *a, *b;
+      'rtype_name` *c;
+      const index_type m = xcount, n = ycount, k = count;
+
+      /* System generated locals */
+      index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+		 i1, i2, i3, i4, i5, i6;
+
+      /* Local variables */
+      'rtype_name` t1[65536], /* was [256][256] */
+		 f11, f12, f21, f22, f31, f32, f41, f42,
+		 f13, f14, f23, f24, f33, f34, f43, f44;
+      index_type i, j, l, ii, jj, ll;
+      index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+      a = abase;
+      b = bbase;
+      c = retarray->base_addr;
+
+      /* Parameter adjustments */
+      c_dim1 = rystride;
+      c_offset = 1 + c_dim1;
+      c -= c_offset;
+      a_dim1 = aystride;
+      a_offset = 1 + a_dim1;
+      a -= a_offset;
+      b_dim1 = bystride;
+      b_offset = 1 + b_dim1;
+      b -= b_offset;
+
+      /* Early exit if possible */
+      if (m == 0 || n == 0 || k == 0)
+	return;
+
+      /* Empty c first.  */
+      for (j=1; j<=n; j++)
+	for (i=1; i<=m; i++)
+	  c[i + j * c_dim1] = ('rtype_name`)0;
+
+      /* Start turning the crank. */
+      i1 = n;
+      for (jj = 1; jj <= i1; jj += 512)
 	{
-	  bbase_y = bbase + y*bystride;
-	  dest_y = dest + y*rystride;
-	  for (n = 0; n < count; n++)
+	  /* Computing MIN */
+	  i2 = 512;
+	  i3 = n - jj + 1;
+	  jsec = min(i2,i3);
+	  ujsec = jsec - jsec % 4;
+	  i2 = k;
+	  for (ll = 1; ll <= i2; ll += 256)
 	    {
-	      abase_n = abase + n*aystride;
-	      bbase_yn = bbase_y[n];
-	      for (x = 0; x < xcount; x++)
+	      /* Computing MIN */
+	      i3 = 256;
+	      i4 = k - ll + 1;
+	      lsec = min(i3,i4);
+	      ulsec = lsec - lsec % 2;
+
+	      i3 = m;
+	      for (ii = 1; ii <= i3; ii += 256)
 		{
-		  dest_y[x] += abase_n[x] * bbase_yn;
+		  /* Computing MIN */
+		  i4 = 256;
+		  i5 = m - ii + 1;
+		  isec = min(i4,i5);
+		  uisec = isec - isec % 2;
+		  i4 = ll + ulsec - 1;
+		  for (l = ll; l <= i4; l += 2)
+		    {
+		      i5 = ii + uisec - 1;
+		      for (i = ii; i <= i5; i += 2)
+			{
+			  t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+					a[i + l * a_dim1];
+			  t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+					a[i + (l + 1) * a_dim1];
+			  t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+					a[i + 1 + l * a_dim1];
+			  t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+					a[i + 1 + (l + 1) * a_dim1];
+			}
+		      if (uisec < isec)
+			{
+			  t1[l - ll + 1 + (isec << 8) - 257] =
+				    a[ii + isec - 1 + l * a_dim1];
+			  t1[l - ll + 2 + (isec << 8) - 257] =
+				    a[ii + isec - 1 + (l + 1) * a_dim1];
+			}
+		    }
+		  if (ulsec < lsec)
+		    {
+		      i4 = ii + isec - 1;
+		      for (i = ii; i<= i4; ++i)
+			{
+			  t1[lsec + ((i - ii + 1) << 8) - 257] =
+				    a[i + (ll + lsec - 1) * a_dim1];
+			}
+		    }
+
+		  uisec = isec - isec % 4;
+		  i4 = jj + ujsec - 1;
+		  for (j = jj; j <= i4; j += 4)
+		    {
+		      i5 = ii + uisec - 1;
+		      for (i = ii; i <= i5; i += 4)
+			{
+			  f11 = c[i + j * c_dim1];
+			  f21 = c[i + 1 + j * c_dim1];
+			  f12 = c[i + (j + 1) * c_dim1];
+			  f22 = c[i + 1 + (j + 1) * c_dim1];
+			  f13 = c[i + (j + 2) * c_dim1];
+			  f23 = c[i + 1 + (j + 2) * c_dim1];
+			  f14 = c[i + (j + 3) * c_dim1];
+			  f24 = c[i + 1 + (j + 3) * c_dim1];
+			  f31 = c[i + 2 + j * c_dim1];
+			  f41 = c[i + 3 + j * c_dim1];
+			  f32 = c[i + 2 + (j + 1) * c_dim1];
+			  f42 = c[i + 3 + (j + 1) * c_dim1];
+			  f33 = c[i + 2 + (j + 2) * c_dim1];
+			  f43 = c[i + 3 + (j + 2) * c_dim1];
+			  f34 = c[i + 2 + (j + 3) * c_dim1];
+			  f44 = c[i + 3 + (j + 3) * c_dim1];
+			  i6 = ll + lsec - 1;
+			  for (l = ll; l <= i6; ++l)
+			    {
+			      f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + j * b_dim1];
+			      f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 1) * b_dim1];
+			      f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 2) * b_dim1];
+			      f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			      f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+				      * b[l + (j + 3) * b_dim1];
+			    }
+			  c[i + j * c_dim1] = f11;
+			  c[i + 1 + j * c_dim1] = f21;
+			  c[i + (j + 1) * c_dim1] = f12;
+			  c[i + 1 + (j + 1) * c_dim1] = f22;
+			  c[i + (j + 2) * c_dim1] = f13;
+			  c[i + 1 + (j + 2) * c_dim1] = f23;
+			  c[i + (j + 3) * c_dim1] = f14;
+			  c[i + 1 + (j + 3) * c_dim1] = f24;
+			  c[i + 2 + j * c_dim1] = f31;
+			  c[i + 3 + j * c_dim1] = f41;
+			  c[i + 2 + (j + 1) * c_dim1] = f32;
+			  c[i + 3 + (j + 1) * c_dim1] = f42;
+			  c[i + 2 + (j + 2) * c_dim1] = f33;
+			  c[i + 3 + (j + 2) * c_dim1] = f43;
+			  c[i + 2 + (j + 3) * c_dim1] = f34;
+			  c[i + 3 + (j + 3) * c_dim1] = f44;
+			}
+		      if (uisec < isec)
+			{
+			  i5 = ii + isec - 1;
+			  for (i = ii + uisec; i <= i5; ++i)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      f12 = c[i + (j + 1) * c_dim1];
+			      f13 = c[i + (j + 2) * c_dim1];
+			      f14 = c[i + (j + 3) * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 1) * b_dim1];
+				  f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 2) * b_dim1];
+				  f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + (j + 3) * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			      c[i + (j + 1) * c_dim1] = f12;
+			      c[i + (j + 2) * c_dim1] = f13;
+			      c[i + (j + 3) * c_dim1] = f14;
+			    }
+			}
+		    }
+		  if (ujsec < jsec)
+		    {
+		      i4 = jj + jsec - 1;
+		      for (j = jj + ujsec; j <= i4; ++j)
+			{
+			  i5 = ii + uisec - 1;
+			  for (i = ii; i <= i5; i += 4)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      f21 = c[i + 1 + j * c_dim1];
+			      f31 = c[i + 2 + j * c_dim1];
+			      f41 = c[i + 3 + j * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+					  257] * b[l + j * b_dim1];
+				  f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+					  257] * b[l + j * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			      c[i + 1 + j * c_dim1] = f21;
+			      c[i + 2 + j * c_dim1] = f31;
+			      c[i + 3 + j * c_dim1] = f41;
+			    }
+			  i5 = ii + isec - 1;
+			  for (i = ii + uisec; i <= i5; ++i)
+			    {
+			      f11 = c[i + j * c_dim1];
+			      i6 = ll + lsec - 1;
+			      for (l = ll; l <= i6; ++l)
+				{
+				  f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+					  257] * b[l + j * b_dim1];
+				}
+			      c[i + j * c_dim1] = f11;
+			    }
+			}
+		    }
 		}
 	    }
 	}
+      return;
     }
   else if (rxstride == 1 && aystride == 1 && bxstride == 1)
     {
@@ -336,7 +569,9 @@ sinclude(`matmul_asm_'rtype_code`.m4')dnl
 	for (n = 0; n < count; n++)
 	  for (x = 0; x < xcount; x++)
 	    /* dest[x,y] += a[x,n] * b[n,y] */
-	    dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
+	    dest[x*rxstride + y*rystride] +=
+					abase[x*axstride + n*aystride] *
+					bbase[n*bxstride + y*bystride];
     }
   else if (GFC_DESCRIPTOR_RANK (a) == 1)
     {
@@ -373,6 +608,5 @@ sinclude(`matmul_asm_'rtype_code`.m4')dnl
 	    }
 	}
     }
-}
-
-#endif'
+}'
+#endif