libstdc++: Enable memcpy optimizations for distinct integral types [PR93059]
Currently we only optimize std::copy, std::copy_n etc. to memmove when the source and destination types are the same. This means that we fail to optimize copying between distinct 1-byte types, e.g. copying from a buffer of unsigned char to a buffer of char8_t or vice versa. This patch adds more partial specializations of the __memcpyable trait so that we allow memcpy between integers of equal widths. This will enable memmove for copies between narrow character types and also between same-width types like int and unsigned. Enabling the optimization needs to be based on the width of the integer type, not just the size in bytes. This is because some targets define non-standard integral types such as __int20 in msp430, which has padding bits. It would not be safe to memcpy between e.g. __int20 and int32_t, even though sizeof(__int20) == sizeof(int32_t). A new trait is introduced to define the width, __memcpyable_integer, and then the __memcpyable trait compares the widths. It's safe to copy between signed and unsigned integers of the same width, because GCC only supports two's complement integers. I initially though it would be useful to define the specialization __memcpyable_integer<byte> to enable copying between narrow character types and std::byte. But that isn't possible with std::copy, because is_assignable<char&, std::byte> is false. Optimized copies using memmove will already happen for copying std::byte to std::byte, because __memcpyable<T*, T*> is true. libstdc++-v3/ChangeLog: PR libstdc++/93059 * include/bits/cpp_type_traits.h (__memcpyable): Add partial specialization for pointers to distinct types. (__memcpyable_integer): New trait to control which types can use cross-type memcpy optimizations.
Loading
Please register or sign in to comment